Experiment set15IT066 for Pseudomonas putida KT2440

Compare to:

Oleic acid carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + Oleic acid (10 mM)
Culturing: Putida_ML5_JBEI, tube, Aerobic, at 30 (C), shaken=200 rpm
By: Mitchell Thompson on 10/22/19
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 4 genes in this experiment

For carbon source Oleic acid in Pseudomonas putida KT2440

For carbon source Oleic acid across organisms

SEED Subsystems

Subsystem #Specific
Biotin biosynthesis 1
Methionine Biosynthesis 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
linoleate biosynthesis II (animals) 2 1 1
benzoyl-CoA biosynthesis 3 3 1
3-methyl-branched fatty acid α-oxidation 6 3 2
oleate biosynthesis I (plants) 3 1 1
alkane biosynthesis II 3 1 1
phytol degradation 4 3 1
wax esters biosynthesis II 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
phosphatidylcholine acyl editing 4 1 1
sporopollenin precursors biosynthesis 18 4 4
2-methyl-branched fatty acid β-oxidation 14 10 3
adipate degradation 5 5 1
adipate biosynthesis 5 4 1
octane oxidation 5 4 1
fatty acid β-oxidation IV (unsaturated, even number) 5 4 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 1
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 2
fatty acid salvage 6 6 1
stearate biosynthesis II (bacteria and plants) 6 5 1
stearate biosynthesis IV 6 4 1
methyl ketone biosynthesis (engineered) 6 3 1
6-gingerol analog biosynthesis (engineered) 6 3 1
stearate biosynthesis I (animals) 6 1 1
fatty acid β-oxidation I (generic) 7 5 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 1
benzoyl-CoA degradation I (aerobic) 7 3 1
capsaicin biosynthesis 7 3 1
ceramide degradation by α-oxidation 7 2 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
2-deoxy-D-ribose degradation II 8 4 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
oleate β-oxidation 35 30 4
phenylacetate degradation I (aerobic) 9 9 1
valproate β-oxidation 9 7 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
3-phenylpropanoate degradation 10 4 1
suberin monomers biosynthesis 20 4 2
superpathway of fatty acid biosynthesis II (plant) 43 38 4
superpathway of phenylethylamine degradation 11 11 1
Spodoptera littoralis pheromone biosynthesis 22 4 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 1 1
platensimycin biosynthesis 26 6 1
superpathway of fatty acids biosynthesis (E. coli) 53 51 2
palmitate biosynthesis III 29 28 1