Oleic acid carbon source
Group:
carbon source
Media:
MOPS minimal media_noCarbon +
Oleic acid (10 mM)
Culturing: Putida_ML5_JBEI, tube, Aerobic, at 30 (C), shaken=200 rpm
By: Mitchell Thompson on
10/22/19
Media components: 40 mM
3-(N-morpholino)propanesulfonic acid, 4 mM
Tricine, 1.32 mM
Potassium phosphate dibasic, 0.01 mM
Iron (II) sulfate heptahydrate, 9.5 mM
Ammonium chloride, 0.276 mM
Aluminum potassium sulfate dodecahydrate, 0.0005 mM
Calcium chloride, 0.525 mM
Magnesium chloride hexahydrate, 50 mM
Sodium Chloride, 3e-09 M
Ammonium heptamolybdate tetrahydrate, 4e-07 M
Boric Acid, 3e-08 M
Cobalt chloride hexahydrate, 1e-08 M
Copper (II) sulfate pentahydrate, 8e-08 M
Manganese (II) chloride tetrahydrate, 1e-08 M
Zinc sulfate heptahydrate
Specific Phenotypes
For 4 genes in this experiment
For carbon source Oleic acid in Pseudomonas putida KT2440
For carbon source Oleic acid across organisms
SEED Subsystems
Metabolic Maps
Color code by fitness: see overview map or list of maps.
Maps containing gene(s) with specific phenotypes:
MetaCyc Pathways
Pathways that contain genes with specific phenotypes:
Pathway | #Steps | #Present | #Specific |
long-chain fatty acid activation | 1 | 1 | 1 |
γ-linolenate biosynthesis II (animals) | 2 | 1 | 1 |
linoleate biosynthesis II (animals) | 2 | 1 | 1 |
benzoyl-CoA biosynthesis | 3 | 3 | 1 |
3-methyl-branched fatty acid α-oxidation | 6 | 3 | 2 |
oleate biosynthesis I (plants) | 3 | 1 | 1 |
alkane biosynthesis II | 3 | 1 | 1 |
phytol degradation | 4 | 3 | 1 |
wax esters biosynthesis II | 4 | 1 | 1 |
long chain fatty acid ester synthesis (engineered) | 4 | 1 | 1 |
phosphatidylcholine acyl editing | 4 | 1 | 1 |
sporopollenin precursors biosynthesis | 18 | 4 | 4 |
2-methyl-branched fatty acid β-oxidation | 14 | 10 | 3 |
adipate degradation | 5 | 5 | 1 |
adipate biosynthesis | 5 | 4 | 1 |
octane oxidation | 5 | 4 | 1 |
fatty acid β-oxidation IV (unsaturated, even number) | 5 | 4 | 1 |
fatty acid β-oxidation II (plant peroxisome) | 5 | 3 | 1 |
sphingosine and sphingosine-1-phosphate metabolism | 10 | 4 | 2 |
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) | 5 | 2 | 1 |
(8E,10E)-dodeca-8,10-dienol biosynthesis | 11 | 6 | 2 |
fatty acid salvage | 6 | 6 | 1 |
stearate biosynthesis II (bacteria and plants) | 6 | 5 | 1 |
stearate biosynthesis IV | 6 | 4 | 1 |
methyl ketone biosynthesis (engineered) | 6 | 3 | 1 |
6-gingerol analog biosynthesis (engineered) | 6 | 3 | 1 |
stearate biosynthesis I (animals) | 6 | 1 | 1 |
fatty acid β-oxidation I (generic) | 7 | 5 | 1 |
fatty acid β-oxidation VI (mammalian peroxisome) | 7 | 4 | 1 |
benzoyl-CoA degradation I (aerobic) | 7 | 3 | 1 |
capsaicin biosynthesis | 7 | 3 | 1 |
ceramide degradation by α-oxidation | 7 | 2 | 1 |
icosapentaenoate biosynthesis II (6-desaturase, mammals) | 7 | 1 | 1 |
icosapentaenoate biosynthesis III (8-desaturase, mammals) | 7 | 1 | 1 |
arachidonate biosynthesis III (6-desaturase, mammals) | 7 | 1 | 1 |
2-deoxy-D-ribose degradation II | 8 | 4 | 1 |
ceramide and sphingolipid recycling and degradation (yeast) | 16 | 4 | 2 |
oleate β-oxidation | 35 | 30 | 4 |
phenylacetate degradation I (aerobic) | 9 | 9 | 1 |
valproate β-oxidation | 9 | 7 | 1 |
benzoate biosynthesis I (CoA-dependent, β-oxidative) | 9 | 3 | 1 |
3-phenylpropanoate degradation | 10 | 4 | 1 |
suberin monomers biosynthesis | 20 | 4 | 2 |
superpathway of fatty acid biosynthesis II (plant) | 43 | 38 | 4 |
superpathway of phenylethylamine degradation | 11 | 11 | 1 |
Spodoptera littoralis pheromone biosynthesis | 22 | 4 | 2 |
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) | 13 | 2 | 1 |
superpathway of glyoxylate cycle and fatty acid degradation | 14 | 11 | 1 |
docosahexaenoate biosynthesis III (6-desaturase, mammals) | 14 | 2 | 1 |
palmitate biosynthesis II (type II fatty acid synthase) | 31 | 29 | 2 |
cutin biosynthesis | 16 | 1 | 1 |
platensimycin biosynthesis | 26 | 6 | 1 |
superpathway of fatty acids biosynthesis (E. coli) | 53 | 51 | 2 |
palmitate biosynthesis III | 29 | 28 | 1 |