Experiment set15IT057 for Pseudomonas putida KT2440

Compare to:

Hexanoic acid carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + Hexanoic acid (10 mM)
Culturing: Putida_ML5_JBEI, tube, Aerobic, at 30 (C), shaken=200 rpm
By: Mitchell Thompson on 10/22/19
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 20 genes in this experiment

For carbon source Hexanoic acid in Pseudomonas putida KT2440

For carbon source Hexanoic acid across organisms

SEED Subsystems

Subsystem #Specific
Multidrug Resistance, Tripartite Systems Found in Gram Negative Bacteria 3
Benzoate degradation 1
Biotin biosynthesis 1
Methionine Biosynthesis 1
Universal stress protein family 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
L-homocysteine biosynthesis 2 2 1
indole-3-acetate biosynthesis III (bacteria) 2 2 1
indole-3-acetate biosynthesis IV (bacteria) 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
linoleate biosynthesis II (animals) 2 1 1
4-nitrobenzoate degradation 2 1 1
acrylonitrile degradation I 2 1 1
fatty acid salvage 6 6 2
L-arginine degradation X (arginine monooxygenase pathway) 3 2 1
3-methyl-branched fatty acid α-oxidation 6 3 2
alkane biosynthesis II 3 1 1
superpathway of acrylonitrile degradation 3 1 1
oleate biosynthesis I (plants) 3 1 1
L-methionine biosynthesis III 4 4 1
phytol degradation 4 3 1
long chain fatty acid ester synthesis (engineered) 4 1 1
phosphatidylcholine acyl editing 4 1 1
wax esters biosynthesis II 4 1 1
sporopollenin precursors biosynthesis 18 4 4
adipate degradation 5 5 1
octane oxidation 5 4 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
S-methyl-5-thio-α-D-ribose 1-phosphate degradation II 5 2 1
S-methyl-5-thio-α-D-ribose 1-phosphate degradation III 5 2 1
L-leucine degradation I 6 5 1
stearate biosynthesis II (bacteria and plants) 6 5 1
stearate biosynthesis IV 6 4 1
superpathway of L-cysteine biosynthesis (fungi) 6 4 1
6-gingerol analog biosynthesis (engineered) 6 3 1
stearate biosynthesis I (animals) 6 1 1
capsaicin biosynthesis 7 3 1
ceramide degradation by α-oxidation 7 2 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
2-deoxy-D-ribose degradation II 8 4 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
oleate β-oxidation 35 30 4
superpathway of sulfur amino acid biosynthesis (Saccharomyces cerevisiae) 10 8 1
suberin monomers biosynthesis 20 4 2
superpathway of fatty acid biosynthesis II (plant) 43 38 4
superpathway of L-methionine biosynthesis (by sulfhydrylation) 12 12 1
indole-3-acetate biosynthesis II 12 5 1
2-methyl-branched fatty acid β-oxidation 14 10 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 1 1
superpathway of fatty acids biosynthesis (E. coli) 53 51 2
palmitate biosynthesis III 29 28 1