Experiment set12IT060 for Pseudomonas putida KT2440

Compare to:

3-Hydroxypropionate carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + 3-Hydroxypropionate (10 mM) + Dimethyl Sulfoxide (1 vol%)
Culturing: Putida_ML5_JBEI, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=700rpm
By: Matthew Incha on 12-Feb-19
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 10 genes in this experiment

For carbon source 3-Hydroxypropionate in Pseudomonas putida KT2440

For carbon source 3-Hydroxypropionate across organisms

SEED Subsystems

Subsystem #Specific
DNA-binding regulatory proteins, strays 2
Isobutyryl-CoA to Propionyl-CoA Module 2
Valine degradation 2
Choline and Betaine Uptake and Betaine Biosynthesis 1
Cysteine Biosynthesis 1
Pyruvate Alanine Serine Interconversions 1
Ribosome biogenesis bacterial 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
β-alanine degradation II 2 2 2
glycine betaine biosynthesis II (Gram-positive bacteria) 2 2 1
choline degradation I 2 2 1
glycine betaine biosynthesis I (Gram-negative bacteria) 2 2 1
β-alanine degradation I 2 1 1
acrylate degradation I 5 3 2
propanoyl-CoA degradation II 5 3 2
choline-O-sulfate degradation 3 3 1
benzoyl-CoA biosynthesis 3 3 1
β-alanine biosynthesis II 6 5 2
L-valine degradation I 8 6 2
2-methyl-branched fatty acid β-oxidation 14 10 3
adipate degradation 5 5 1
superpathway of coenzyme A biosynthesis II (plants) 10 9 2
fatty acid β-oxidation IV (unsaturated, even number) 5 4 1
adipate biosynthesis 5 4 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 1
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 2
methyl ketone biosynthesis (engineered) 6 3 1
fatty acid β-oxidation I (generic) 7 5 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 1
benzoyl-CoA degradation I (aerobic) 7 3 1
myo-inositol degradation I 7 1 1
2,4-dinitrotoluene degradation 7 1 1
phenylacetate degradation I (aerobic) 9 9 1
valproate β-oxidation 9 7 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
3-phenylpropanoate degradation 10 4 1
myo-, chiro- and scyllo-inositol degradation 10 1 1
superpathway of phenylethylamine degradation 11 11 1
Spodoptera littoralis pheromone biosynthesis 22 4 2
oleate β-oxidation 35 30 3
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
platensimycin biosynthesis 26 6 1