Experiment set12IT056 for Pseudomonas putida KT2440

Compare to:

Ferulic Acid carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + Ferulic Acid (10 mM) + Dimethyl Sulfoxide (1 vol%)
Culturing: Putida_ML5_JBEI, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=700rpm
By: Matthew Incha on 12-Feb-19
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 15 genes in this experiment

For carbon source Ferulic Acid in Pseudomonas putida KT2440

For carbon source Ferulic Acid across organisms

SEED Subsystems

Subsystem #Specific
Protocatechuate branch of beta-ketoadipate pathway 7
Chloroaromatic degradation pathway 3
Phenylpropanoid compound degradation 3
Catechol branch of beta-ketoadipate pathway 2
Glutathione-dependent pathway of formaldehyde detoxification 2

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
ferulate degradation 3 3 3
3-oxoadipate degradation 2 2 2
vanillin and vanillate degradation II 2 2 2
acetaldehyde biosynthesis I 1 1 1
protocatechuate degradation II (ortho-cleavage pathway) 4 4 3
trans-caffeate degradation (aerobic) 4 3 3
benzoyl-CoA biosynthesis 3 3 2
4-hydroxybenzoate biosynthesis III (plants) 5 5 3
4-coumarate degradation (aerobic) 5 4 3
aromatic compounds degradation via β-ketoadipate 9 9 5
catechol degradation III (ortho-cleavage pathway) 6 6 3
4-coumarate degradation (anaerobic) 6 3 3
4-hydroxybenzoate biosynthesis IV (plants) 2 1 1
acetoacetate degradation (to acetyl CoA) 2 1 1
pyruvate fermentation to ethanol II 2 1 1
vanillin and vanillate degradation I 2 1 1
ethanol degradation I 2 1 1
toluene degradation III (aerobic) (via p-cresol) 11 7 5
superpathway of salicylate degradation 7 7 3
2-methyl-branched fatty acid β-oxidation 14 10 6
4-methylcatechol degradation (ortho cleavage) 7 5 3
adipate degradation 5 5 2
adipate biosynthesis 5 4 2
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
fatty acid β-oxidation II (plant peroxisome) 5 3 2
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 2
formaldehyde oxidation II (glutathione-dependent) 3 3 1
ethanol degradation II 3 3 1
ketolysis 3 3 1
valproate β-oxidation 9 7 3
L-valine degradation II 3 2 1
umbelliferone biosynthesis 3 2 1
L-leucine degradation III 3 2 1
L-isoleucine degradation II 3 2 1
polyhydroxybutanoate biosynthesis 3 2 1
caffeoylglucarate biosynthesis 3 1 1
pyruvate fermentation to ethanol I 3 1 1
L-methionine degradation III 3 1 1
1,3-dimethylbenzene degradation to 3-methylbenzoate 3 1 1
D-phenylglycine degradation 3 1 1
1,4-dimethylbenzene degradation to 4-methylbenzoate 3 1 1
toluene degradation to benzoate 3 1 1
pyruvate fermentation to ethanol III 3 1 1
3-chlorotoluene degradation II 3 1 1
oleate β-oxidation 35 30 11
fatty acid β-oxidation I (generic) 7 5 2
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 2
capsaicin biosynthesis 7 3 2
benzoyl-CoA degradation I (aerobic) 7 3 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 3
catechol degradation to β-ketoadipate 4 4 1
salidroside biosynthesis 4 3 1
phytol degradation 4 3 1
L-tyrosine degradation III 4 2 1
(2S)-ethylmalonyl-CoA biosynthesis 4 2 1
4-sulfocatechol degradation 4 2 1
L-phenylalanine degradation III 4 2 1
hydroxycinnamate sugar acid ester biosynthesis 4 1 1
xanthohumol biosynthesis 4 1 1
benzoate biosynthesis II (CoA-independent, non-β-oxidative) 4 1 1
naringenin biosynthesis (engineered) 4 1 1
phenylacetate degradation I (aerobic) 9 9 2
mandelate degradation to acetyl-CoA 18 11 4
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 2
ethanolamine utilization 5 4 1
gallate degradation II 5 4 1
fatty acid β-oxidation IV (unsaturated, even number) 5 4 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 4 1
pyruvate fermentation to isobutanol (engineered) 5 4 1
protein S-nitrosylation and denitrosylation 5 3 1
phenylethanol biosynthesis 5 3 1
ketogenesis 5 3 1
glutaryl-CoA degradation 5 3 1
acetylene degradation (anaerobic) 5 3 1
superpathway of aromatic compound degradation via 3-oxoadipate 35 19 7
superpathway of aerobic toluene degradation 30 13 6
3-phenylpropanoate degradation 10 4 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
fatty acid β-oxidation VII (yeast peroxisome) 5 2 1
4-hydroxybenzoate biosynthesis I (eukaryotes) 5 2 1
(S)-propane-1,2-diol degradation 5 2 1
flavonoid biosynthesis 5 1 1
isopropanol biosynthesis (engineered) 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
chlorogenic acid biosynthesis II 5 1 1
phaselate biosynthesis 5 1 1
mandelate degradation I 5 1 1
pyruvate fermentation to acetone 5 1 1
superpathway of phenylethylamine degradation 11 11 2
pyruvate fermentation to hexanol (engineered) 11 8 2
fatty acid salvage 6 6 1
L-isoleucine degradation I 6 5 1
propanoate fermentation to 2-methylbutanoate 6 4 1
pyruvate fermentation to butanol II (engineered) 6 4 1
6-gingerol analog biosynthesis (engineered) 6 3 1
methyl ketone biosynthesis (engineered) 6 3 1
4-hydroxymandelate degradation 6 2 1
4-ethylphenol degradation (anaerobic) 6 2 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
salicin biosynthesis 6 1 1
jasmonic acid biosynthesis 19 4 3
noradrenaline and adrenaline degradation 13 8 2
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 4 2
coumarins biosynthesis (engineered) 13 4 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 2
3-methylbutanol biosynthesis (engineered) 7 6 1
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
acetyl-CoA fermentation to butanoate 7 4 1
serotonin degradation 7 4 1
pyruvate fermentation to butanoate 7 3 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 2
mevalonate pathway II (haloarchaea) 7 1 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
2-deoxy-D-ribose degradation II 8 4 1
pyruvate fermentation to butanol I 8 3 1
butanol and isobutanol biosynthesis (engineered) 8 3 1
2-methylpropene degradation 8 2 1
chlorogenic acid biosynthesis I 8 1 1
isoprene biosynthesis II (engineered) 8 1 1
mevalonate pathway IV (archaea) 8 1 1
mevalonate pathway III (Thermoplasma) 8 1 1
androstenedione degradation I (aerobic) 25 7 3
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 6 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
4-oxopentanoate degradation 9 5 1
superpathway of fermentation (Chlamydomonas reinhardtii) 9 4 1
avenanthramide biosynthesis 9 1 1
superpathway of testosterone and androsterone degradation 28 7 3
superpathway of vanillin and vanillate degradation 10 7 1
L-glutamate degradation V (via hydroxyglutarate) 10 5 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
L-lysine fermentation to acetate and butanoate 10 3 1
suberin monomers biosynthesis 20 4 2
methyl tert-butyl ether degradation 10 2 1
rosmarinic acid biosynthesis I 10 2 1
pinoresinol degradation 10 2 1
curcuminoid biosynthesis 10 1 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 9 4
Spodoptera littoralis pheromone biosynthesis 22 4 2
ethylmalonyl-CoA pathway 11 2 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 4
superpathway of C1 compounds oxidation to CO2 12 5 1
L-glutamate degradation VII (to butanoate) 12 3 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
toluene degradation IV (aerobic) (via catechol) 13 6 1
platensimycin biosynthesis 26 6 2
Amaryllidacea alkaloids biosynthesis 26 3 2
L-tryptophan degradation V (side chain pathway) 13 1 1
androstenedione degradation II (anaerobic) 27 5 2
superpathway of rosmarinic acid biosynthesis 14 2 1
L-tryptophan degradation III (eukaryotic) 15 3 1
flavonoid di-C-glucosylation 15 3 1
monolignol biosynthesis 15 1 1
mixed acid fermentation 16 12 1
glycerol degradation to butanol 16 9 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
heterolactic fermentation 18 12 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 9 1
toluene degradation VI (anaerobic) 18 4 1
sitosterol degradation to androstenedione 18 1 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 14 1
superpathway of anaerobic sucrose degradation 19 13 1
superpathway of aromatic compound degradation via 2-hydroxypentadienoate 42 13 2
superpathway of N-acetylneuraminate degradation 22 12 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 5 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 1
superpathway of ergosterol biosynthesis I 26 3 1
1-butanol autotrophic biosynthesis (engineered) 27 19 1
superpathway of cholesterol biosynthesis 38 3 1
superpathway of L-lysine degradation 43 23 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 21 1