Experiment set12IT055 for Pseudomonas putida KT2440

Compare to:

benzoic acid carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + benzoic acid (10 mM) + Dimethyl Sulfoxide (1 vol%)
Culturing: Putida_ML5_JBEI, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=700rpm
By: Matthew Incha on 12-Feb-19
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 16 genes in this experiment

For carbon source benzoic acid in Pseudomonas putida KT2440

For carbon source benzoic acid across organisms

SEED Subsystems

Subsystem #Specific
Protocatechuate branch of beta-ketoadipate pathway 5
Benzoate degradation 4
Catechol branch of beta-ketoadipate pathway 4
Chloroaromatic degradation pathway 3
DNA-binding regulatory proteins, strays 1
Glycine and Serine Utilization 1
Glycine cleavage system 1
Phenylpropionate Degradation 1
Photorespiration (oxidative C2 cycle) 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
benzoate degradation I (aerobic) 2 2 2
3-oxoadipate degradation 2 2 2
catechol degradation III (ortho-cleavage pathway) 6 6 5
catechol degradation to β-ketoadipate 4 4 3
superpathway of salicylate degradation 7 7 5
4-methylcatechol degradation (ortho cleavage) 7 5 4
aromatic compounds degradation via β-ketoadipate 9 9 5
acetoacetate degradation (to acetyl CoA) 2 1 1
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
mandelate degradation to acetyl-CoA 18 11 7
ketolysis 3 3 1
glycine biosynthesis II 3 3 1
glycine cleavage 3 3 1
benzoyl-CoA biosynthesis 3 3 1
polyhydroxybutanoate biosynthesis 3 2 1
toluene degradation III (aerobic) (via p-cresol) 11 7 3
protocatechuate degradation II (ortho-cleavage pathway) 4 4 1
(2S)-ethylmalonyl-CoA biosynthesis 4 2 1
oleate β-oxidation 35 30 8
valproate β-oxidation 9 7 2
2-methyl-branched fatty acid β-oxidation 14 10 3
4-hydroxybenzoate biosynthesis III (plants) 5 5 1
adipate degradation 5 5 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 4 1
adipate biosynthesis 5 4 1
ketogenesis 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
glutaryl-CoA degradation 5 3 1
superpathway of aromatic compound degradation via 3-oxoadipate 35 19 7
meta cleavage pathway of aromatic compounds 10 5 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
fatty acid β-oxidation VII (yeast peroxisome) 5 2 1
pyruvate fermentation to acetone 5 1 1
isopropanol biosynthesis (engineered) 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
pyruvate fermentation to hexanol (engineered) 11 8 2
fatty acid salvage 6 6 1
L-isoleucine degradation I 6 5 1
propanoate fermentation to 2-methylbutanoate 6 4 1
pyruvate fermentation to butanol II (engineered) 6 4 1
superpathway of aerobic toluene degradation 30 13 5
4-ethylphenol degradation (anaerobic) 6 2 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
jasmonic acid biosynthesis 19 4 3
toluene degradation IV (aerobic) (via catechol) 13 6 2
fatty acid β-oxidation I (generic) 7 5 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 1
acetyl-CoA fermentation to butanoate 7 4 1
pyruvate fermentation to butanoate 7 3 1
benzoyl-CoA degradation I (aerobic) 7 3 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
mevalonate pathway II (haloarchaea) 7 1 1
2-deoxy-D-ribose degradation II 8 4 1
pyruvate fermentation to butanol I 8 3 1
2-methylpropene degradation 8 2 1
isoprene biosynthesis II (engineered) 8 1 1
mevalonate pathway IV (archaea) 8 1 1
mevalonate pathway III (Thermoplasma) 8 1 1
androstenedione degradation I (aerobic) 25 7 3
phenylacetate degradation I (aerobic) 9 9 1
4-oxopentanoate degradation 9 5 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
superpathway of testosterone and androsterone degradation 28 7 3
L-glutamate degradation V (via hydroxyglutarate) 10 5 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
3-phenylpropanoate degradation 10 4 1
L-lysine fermentation to acetate and butanoate 10 3 1
methyl tert-butyl ether degradation 10 2 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 9 4
superpathway of phenylethylamine degradation 11 11 1
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 1
ethylmalonyl-CoA pathway 11 2 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 4
L-glutamate degradation VII (to butanoate) 12 3 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 4 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
androstenedione degradation II (anaerobic) 27 5 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
L-tryptophan degradation III (eukaryotic) 15 3 1
glycerol degradation to butanol 16 9 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 6 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 9 1
toluene degradation VI (anaerobic) 18 4 1
sitosterol degradation to androstenedione 18 1 1
superpathway of aromatic compound degradation via 2-hydroxypentadienoate 42 13 2
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 5 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 1
platensimycin biosynthesis 26 6 1
superpathway of ergosterol biosynthesis I 26 3 1
1-butanol autotrophic biosynthesis (engineered) 27 19 1
superpathway of cholesterol biosynthesis 38 3 1
superpathway of L-lysine degradation 43 23 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 21 1