Experiment set12IT051 for Pseudomonas putida KT2440

Compare to:

Delta-Nonalactone carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + Delta-Nonalactone (10 mM) + Dimethyl Sulfoxide (1 vol%)
Culturing: Putida_ML5_JBEI, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=700rpm
By: Matthew Incha on 12-Feb-19
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 66 genes in this experiment

For carbon source Delta-Nonalactone in Pseudomonas putida KT2440

For carbon source Delta-Nonalactone across organisms

SEED Subsystems

Subsystem #Specific
ABC transporter oligopeptide (TC 3.A.1.5.1) 3
Oxidative stress 3
Polyamine Metabolism 3
Glycine and Serine Utilization 2
Pyruvate Alanine Serine Interconversions 2
ABC transporter alkylphosphonate (TC 3.A.1.9.1) 1
ABC transporter dipeptide (TC 3.A.1.5.2) 1
Acetyl-CoA fermentation to Butyrate 1
Adenosyl nucleosidases 1
Arginine and Ornithine Degradation 1
Bacterial Cell Division 1
Butanol Biosynthesis 1
Chorismate: Intermediate for synthesis of PAPA antibiotics, PABA, anthranilate, 3-hydroxyanthranilate and more. 1
Coenzyme A Biosynthesis 1
Copper homeostasis 1
DNA-replication 1
Deoxyribose and Deoxynucleoside Catabolism 1
Folate Biosynthesis 1
Glycerol and Glycerol-3-phosphate Uptake and Utilization 1
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 1
Glycine cleavage system 1
Glycine reductase, sarcosine reductase and betaine reductase 1
Glycolysis and Gluconeogenesis 1
Glycolysis and Gluconeogenesis, including Archaeal enzymes 1
Lysine degradation 1
Nudix proteins (nucleoside triphosphate hydrolases) 1
Phosphate metabolism 1
Photorespiration (oxidative C2 cycle) 1
Polyhydroxybutyrate metabolism 1
Proteasome bacterial 1
Proteolysis in bacteria, ATP-dependent 1
Purine conversions 1
Pyruvate metabolism I: anaplerotic reactions, PEP 1
Respiratory dehydrogenases 1 1
Thioredoxin-disulfide reductase 1
Ton and Tol transport systems 1
Transcription factors bacterial 1
Transport of Zinc 1
Wyeosine-MimG Biosynthesis 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 4 4
purine deoxyribonucleosides degradation I 4 4 3
purine deoxyribonucleosides degradation II 3 3 2
purine ribonucleosides degradation 6 5 4
adenine and adenosine salvage III 4 4 2
guanine and guanosine salvage I 2 2 1
oleate β-oxidation (thioesterase-dependent, yeast) 2 2 1
xanthine and xanthosine salvage 2 2 1
adenine and adenosine salvage I 2 2 1
L-alanine degradation I 2 2 1
4-aminobenzoate biosynthesis I 2 2 1
phospholipid remodeling (phosphatidate, yeast) 2 1 1
thioredoxin pathway 2 1 1
4-aminobenzoate biosynthesis II 2 1 1
acetoacetate degradation (to acetyl CoA) 2 1 1
palmitoleate biosynthesis III (cyanobacteria) 2 1 1
superpathway of purine deoxyribonucleosides degradation 7 4 3
oleate β-oxidation 35 30 14
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
glutaryl-CoA degradation 5 3 2
fatty acid salvage 6 6 2
benzoyl-CoA biosynthesis 3 3 1
glycine biosynthesis II 3 3 1
ketolysis 3 3 1
glycine cleavage 3 3 1
valproate β-oxidation 9 7 3
pyruvate fermentation to butanol II (engineered) 6 4 2
adenine and adenosine salvage V 3 2 1
superpathway of guanine and guanosine salvage 3 2 1
polyhydroxybutanoate biosynthesis 3 2 1
oleate biosynthesis III (cyanobacteria) 3 2 1
pyrimidine deoxyribonucleosides degradation 3 2 1
2-methyl-branched fatty acid β-oxidation 14 10 4
pyruvate fermentation to butanoate 7 3 2
purine nucleotides degradation II (aerobic) 11 11 3
pyruvate fermentation to hexanol (engineered) 11 8 3
phosphopantothenate biosynthesis I 4 4 1
inosine 5'-phosphate degradation 4 4 1
CDP-diacylglycerol biosynthesis I 4 4 1
guanosine nucleotides degradation III 4 4 1
CDP-diacylglycerol biosynthesis II 4 4 1
phosphopantothenate biosynthesis III (archaea) 4 2 1
(2S)-ethylmalonyl-CoA biosynthesis 4 2 1
pyruvate fermentation to butanol I 8 3 2
2-methylpropene degradation 8 2 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 2
adipate degradation 5 5 1
4-hydroxybenzoate biosynthesis III (plants) 5 5 1
adenosine nucleotides degradation II 5 5 1
L-arginine degradation II (AST pathway) 5 5 1
superpathway of coenzyme A biosynthesis II (plants) 10 9 2
CDP-diacylglycerol biosynthesis III 5 3 1
phosphatidate biosynthesis (yeast) 5 3 1
ketogenesis 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
L-glutamate degradation V (via hydroxyglutarate) 10 5 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
fatty acid β-oxidation VII (yeast peroxisome) 5 2 1
methyl tert-butyl ether degradation 10 2 2
nucleoside and nucleotide degradation (archaea) 10 2 2
isopropanol biosynthesis (engineered) 5 1 1
pyruvate fermentation to acetone 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
phosphatidylglycerol biosynthesis II 6 6 1
phosphatidylglycerol biosynthesis I 6 6 1
superpathway of phospholipid biosynthesis III (E. coli) 12 10 2
L-isoleucine degradation I 6 5 1
β-alanine biosynthesis II 6 5 1
propanoate fermentation to 2-methylbutanoate 6 4 1
palmitoyl ethanolamide biosynthesis 6 2 1
superpathway of stearidonate biosynthesis (cyanobacteria) 6 2 1
4-ethylphenol degradation (anaerobic) 6 2 1
superpathway of pyrimidine deoxyribonucleosides degradation 6 2 1
nucleoside and nucleotide degradation (halobacteria) 6 2 1
L-glutamate degradation VII (to butanoate) 12 3 2
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
fluoroacetate and fluorothreonine biosynthesis 6 1 1
jasmonic acid biosynthesis 19 4 3
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 4
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 4 2
superpathway of purine nucleotide salvage 14 13 2
ureide biosynthesis 7 6 1
fatty acid β-oxidation I (generic) 7 5 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 1
acetyl-CoA fermentation to butanoate 7 4 1
diacylglycerol and triacylglycerol biosynthesis 7 3 1
stigma estolide biosynthesis 7 2 1
mevalonate pathway II (haloarchaea) 7 1 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
L-tryptophan degradation III (eukaryotic) 15 3 2
glycerol degradation to butanol 16 9 2
2-deoxy-D-ribose degradation II 8 4 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 2
anandamide biosynthesis II 8 2 1
isoprene biosynthesis II (engineered) 8 1 1
mevalonate pathway III (Thermoplasma) 8 1 1
mevalonate pathway IV (archaea) 8 1 1
androstenedione degradation I (aerobic) 25 7 3
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 6 2
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 2
superpathway of coenzyme A biosynthesis I (bacteria) 9 8 1
4-oxopentanoate degradation 9 5 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 9 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
toluene degradation VI (anaerobic) 18 4 2
superpathway of testosterone and androsterone degradation 28 7 3
superpathway of tetrahydrofolate biosynthesis 10 8 1
glycolysis V (Pyrococcus) 10 7 1
3-phenylpropanoate degradation 10 4 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
L-lysine fermentation to acetate and butanoate 10 3 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 9 4
glycolysis II (from fructose 6-phosphate) 11 9 1
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 1
superpathway of candicidin biosynthesis 11 4 1
ethylmalonyl-CoA pathway 11 2 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 4
superpathway of tetrahydrofolate biosynthesis and salvage 12 10 1
anandamide biosynthesis I 12 3 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
gluconeogenesis I 13 11 1
glycolysis I (from glucose 6-phosphate) 13 10 1
superpathway of cardiolipin biosynthesis (bacteria) 13 9 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
1-butanol autotrophic biosynthesis (engineered) 27 19 2
androstenedione degradation II (anaerobic) 27 5 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
superpathway of phospholipid biosynthesis II (plants) 28 10 2
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
salinosporamide A biosynthesis 15 4 1
plasmalogen biosynthesis I (aerobic) 16 1 1
superpathway of glycolysis and the Entner-Doudoroff pathway 17 14 1
arsenic detoxification (mammals) 17 8 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
superpathway of hexitol degradation (bacteria) 18 13 1
gluconeogenesis II (Methanobacterium thermoautotrophicum) 18 9 1
sitosterol degradation to androstenedione 18 1 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 14 1
superpathway of anaerobic sucrose degradation 19 13 1
superpathway of N-acetylneuraminate degradation 22 12 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 5 2
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 22 1
platensimycin biosynthesis 26 6 1
superpathway of ergosterol biosynthesis I 26 3 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 21 2
superpathway of cholesterol biosynthesis 38 3 1
superpathway of L-lysine degradation 43 23 1
superpathway of chorismate metabolism 59 42 1