Experiment set12IT050 for Pseudomonas putida KT2440

Compare to:

Delta-Decalactone carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + Delta-Decalactone (10 mM) + Dimethyl Sulfoxide (1 vol%)
Culturing: Putida_ML5_JBEI, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=700rpm
By: Matthew Incha on 12-Feb-19
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 46 genes in this experiment

For carbon source Delta-Decalactone in Pseudomonas putida KT2440

For carbon source Delta-Decalactone across organisms

SEED Subsystems

Subsystem #Specific
Oxidative stress 3
Glycine and Serine Utilization 2
Photorespiration (oxidative C2 cycle) 2
ABC transporter oligopeptide (TC 3.A.1.5.1) 1
Alginate metabolism 1
Bacterial Cell Division 1
Biotin biosynthesis 1
Entner-Doudoroff Pathway 1
Folate Biosynthesis 1
Formate hydrogenase 1
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 1
Glycine Biosynthesis 1
Glycine cleavage system 1
Glycolysis and Gluconeogenesis 1
Glycolysis and Gluconeogenesis, including Archaeal enzymes 1
LMPTP YwlE cluster 1
Methylglyoxal Metabolism 1
Peptidoglycan Biosynthesis 1
Polyamine Metabolism 1
Polyhydroxybutyrate metabolism 1
Proteasome bacterial 1
Proteolysis in bacteria, ATP-dependent 1
Pyruvate metabolism I: anaplerotic reactions, PEP 1
Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate 1
Ribosome biogenesis bacterial 1
Serine-glyoxylate cycle 1
Serine Biosynthesis 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
glycine biosynthesis I 1 1 1
oleate β-oxidation (thioesterase-dependent, yeast) 2 2 1
putrescine degradation V 2 2 1
phenylethylamine degradation II 2 2 1
phenylethylamine degradation I 2 2 1
phytol degradation 4 3 2
3-methyl-branched fatty acid α-oxidation 6 3 3
ethylene glycol degradation 2 1 1
linoleate biosynthesis II (animals) 2 1 1
phenylethanol degradation 2 1 1
putrescine degradation I 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
octane oxidation 5 4 2
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 4 2
sphingosine and sphingosine-1-phosphate metabolism 10 4 4
fatty acid salvage 6 6 2
glycine cleavage 3 3 1
glycine degradation 3 3 1
ethanol degradation IV 3 3 1
glycine biosynthesis II 3 3 1
dTMP de novo biosynthesis (mitochondrial) 3 3 1
ethanol degradation II 3 3 1
ethanol degradation III 3 2 1
polyhydroxydecanoate biosynthesis 3 2 1
L-phenylalanine degradation II (anaerobic) 3 2 1
hypotaurine degradation 3 2 1
putrescine degradation IV 3 2 1
styrene degradation 3 1 1
histamine degradation 3 1 1
alkane biosynthesis II 3 1 1
oleate biosynthesis I (plants) 3 1 1
ceramide degradation by α-oxidation 7 2 2
superpathway of L-serine and glycine biosynthesis I 4 4 1
L-tryptophan degradation X (mammalian, via tryptamine) 4 3 1
putrescine degradation III 4 3 1
fatty acid α-oxidation I (plants) 4 2 1
D-arabinose degradation II 4 2 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 4
glycine betaine degradation II (mammalian) 4 1 1
wax esters biosynthesis II 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
phosphatidylcholine acyl editing 4 1 1
sporopollenin precursors biosynthesis 18 4 4
adipate degradation 5 5 1
folate polyglutamylation 5 4 1
mitochondrial NADPH production (yeast) 5 4 1
dopamine degradation 5 2 1
oleate β-oxidation 35 30 6
β-alanine biosynthesis II 6 5 1
stearate biosynthesis II (bacteria and plants) 6 5 1
stearate biosynthesis IV 6 4 1
6-gingerol analog biosynthesis (engineered) 6 3 1
alkane oxidation 6 1 1
stearate biosynthesis I (animals) 6 1 1
noradrenaline and adrenaline degradation 13 8 2
glycine betaine degradation III 7 7 1
superpathway of glycol metabolism and degradation 7 6 1
serotonin degradation 7 4 1
capsaicin biosynthesis 7 3 1
limonene degradation IV (anaerobic) 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
superpathway of NAD/NADP - NADH/NADPH interconversion (yeast) 8 7 1
superpathway of ornithine degradation 8 6 1
glycine betaine degradation I 8 6 1
2-deoxy-D-ribose degradation II 8 4 1
aromatic biogenic amine degradation (bacteria) 8 3 1
folate transformations III (E. coli) 9 9 1
valproate β-oxidation 9 7 1
L-phenylalanine degradation IV (mammalian, via side chain) 9 6 1
photorespiration III 9 6 1
photorespiration I 9 6 1
Entner-Doudoroff pathway II (non-phosphorylative) 9 5 1
superpathway of coenzyme A biosynthesis II (plants) 10 9 1
glycolysis V (Pyrococcus) 10 7 1
photorespiration II 10 7 1
suberin monomers biosynthesis 20 4 2
superpathway of fatty acid biosynthesis II (plant) 43 38 4
superpathway of phenylethylamine degradation 11 11 1
folate transformations II (plants) 11 10 1
glycolysis II (from fructose 6-phosphate) 11 9 1
superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation 11 9 1
superpathway of L-arginine and L-ornithine degradation 13 11 1
gluconeogenesis I 13 11 1
glycolysis I (from glucose 6-phosphate) 13 10 1
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 2
folate transformations I 13 9 1
formaldehyde assimilation I (serine pathway) 13 7 1
2-methyl-branched fatty acid β-oxidation 14 10 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 1 1
superpathway of glycolysis and the Entner-Doudoroff pathway 17 14 1
superpathway of hexitol degradation (bacteria) 18 13 1
gluconeogenesis II (Methanobacterium thermoautotrophicum) 18 9 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 14 1
superpathway of anaerobic sucrose degradation 19 13 1
superpathway of N-acetylneuraminate degradation 22 12 1
purine nucleobases degradation II (anaerobic) 24 16 1
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 22 1
superpathway of fatty acids biosynthesis (E. coli) 53 51 2
anaerobic aromatic compound degradation (Thauera aromatica) 27 4 1
palmitate biosynthesis III 29 28 1
superpathway of pentose and pentitol degradation 42 10 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 21 1