Experiment set12IT049 for Pseudomonas putida KT2440

Compare to:

Delta-Dodecalactone carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + Delta-Dodecalactone (10 mM) + Dimethyl Sulfoxide (1 vol%)
Culturing: Putida_ML5_JBEI, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=700rpm
By: Matthew Incha on 12-Feb-19
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 24 genes in this experiment

For carbon source Delta-Dodecalactone in Pseudomonas putida KT2440

For carbon source Delta-Dodecalactone across organisms

SEED Subsystems

Subsystem #Specific
Polyhydroxybutyrate metabolism 2
Biotin biosynthesis 1
Coenzyme A Biosynthesis 1
Glycine and Serine Utilization 1
Glycine cleavage system 1
Photorespiration (oxidative C2 cycle) 1
Polyamine Metabolism 1
Purine conversions 1
Ribosome biogenesis bacterial 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
adenosine nucleotides degradation III 1 1 1
long-chain fatty acid activation 1 1 1
linoleate biosynthesis II (animals) 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
glycine cleavage 3 3 1
glycine biosynthesis II 3 3 1
polyhydroxydecanoate biosynthesis 3 2 1
3-methyl-branched fatty acid α-oxidation 6 3 2
oleate biosynthesis I (plants) 3 1 1
alkane biosynthesis II 3 1 1
phosphopantothenate biosynthesis I 4 4 1
phytol degradation 4 3 1
phosphopantothenate biosynthesis III (archaea) 4 2 1
wax esters biosynthesis II 4 1 1
phosphatidylcholine acyl editing 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
sporopollenin precursors biosynthesis 18 4 4
octane oxidation 5 4 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
fatty acid salvage 6 6 1
stearate biosynthesis II (bacteria and plants) 6 5 1
stearate biosynthesis IV 6 4 1
6-gingerol analog biosynthesis (engineered) 6 3 1
stearate biosynthesis I (animals) 6 1 1
capsaicin biosynthesis 7 3 1
ceramide degradation by α-oxidation 7 2 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
2-deoxy-D-ribose degradation II 8 4 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
superpathway of coenzyme A biosynthesis I (bacteria) 9 8 1
superpathway of coenzyme A biosynthesis II (plants) 10 9 1
suberin monomers biosynthesis 20 4 2
superpathway of fatty acid biosynthesis II (plant) 43 38 4
salinosporamide A biosynthesis 15 4 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 1 1
superpathway of fatty acids biosynthesis (E. coli) 53 51 2
palmitate biosynthesis III 29 28 1
oleate β-oxidation 35 30 1