Experiment set12IT044 for Pseudomonas putida KT2440

Compare to:

Vanillic Acid carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + Vanillic Acid (10 mM) + Dimethyl Sulfoxide (1 vol%)
Culturing: Putida_ML5_JBEI, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=700rpm
By: Matthew Incha on 12-Feb-19
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 13 genes in this experiment

For carbon source Vanillic Acid in Pseudomonas putida KT2440

For carbon source Vanillic Acid across organisms

SEED Subsystems

Subsystem #Specific
Protocatechuate branch of beta-ketoadipate pathway 8
Chloroaromatic degradation pathway 3
Catechol branch of beta-ketoadipate pathway 2
Glutathione-dependent pathway of formaldehyde detoxification 2
Phenylpropanoid compound degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
3-oxoadipate degradation 2 2 2
acetaldehyde biosynthesis I 1 1 1
protocatechuate degradation II (ortho-cleavage pathway) 4 4 3
aromatic compounds degradation via β-ketoadipate 9 9 5
catechol degradation III (ortho-cleavage pathway) 6 6 3
vanillin and vanillate degradation II 2 2 1
pyruvate fermentation to ethanol II 2 1 1
acetoacetate degradation (to acetyl CoA) 2 1 1
ethanol degradation I 2 1 1
toluene degradation III (aerobic) (via p-cresol) 11 7 5
superpathway of salicylate degradation 7 7 3
4-methylcatechol degradation (ortho cleavage) 7 5 3
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
ethanol degradation II 3 3 1
benzoyl-CoA biosynthesis 3 3 1
formaldehyde oxidation II (glutathione-dependent) 3 3 1
ketolysis 3 3 1
polyhydroxybutanoate biosynthesis 3 2 1
L-leucine degradation III 3 2 1
L-isoleucine degradation II 3 2 1
L-valine degradation II 3 2 1
L-methionine degradation III 3 1 1
pyruvate fermentation to ethanol I 3 1 1
pyruvate fermentation to ethanol III 3 1 1
catechol degradation to β-ketoadipate 4 4 1
phytol degradation 4 3 1
salidroside biosynthesis 4 3 1
L-tyrosine degradation III 4 2 1
4-sulfocatechol degradation 4 2 1
L-phenylalanine degradation III 4 2 1
(2S)-ethylmalonyl-CoA biosynthesis 4 2 1
oleate β-oxidation 35 30 8
valproate β-oxidation 9 7 2
2-methyl-branched fatty acid β-oxidation 14 10 3
adipate degradation 5 5 1
4-hydroxybenzoate biosynthesis III (plants) 5 5 1
ethanolamine utilization 5 4 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 4 1
adipate biosynthesis 5 4 1
pyruvate fermentation to isobutanol (engineered) 5 4 1
gallate degradation II 5 4 1
phenylethanol biosynthesis 5 3 1
glutaryl-CoA degradation 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
ketogenesis 5 3 1
acetylene degradation (anaerobic) 5 3 1
protein S-nitrosylation and denitrosylation 5 3 1
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
fatty acid β-oxidation VII (yeast peroxisome) 5 2 1
(S)-propane-1,2-diol degradation 5 2 1
isopropanol biosynthesis (engineered) 5 1 1
pyruvate fermentation to acetone 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
pyruvate fermentation to hexanol (engineered) 11 8 2
fatty acid salvage 6 6 1
L-isoleucine degradation I 6 5 1
pyruvate fermentation to butanol II (engineered) 6 4 1
propanoate fermentation to 2-methylbutanoate 6 4 1
mandelate degradation to acetyl-CoA 18 11 3
superpathway of aerobic toluene degradation 30 13 5
4-ethylphenol degradation (anaerobic) 6 2 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
jasmonic acid biosynthesis 19 4 3
noradrenaline and adrenaline degradation 13 8 2
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 4 2
3-methylbutanol biosynthesis (engineered) 7 6 1
fatty acid β-oxidation I (generic) 7 5 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 1
acetyl-CoA fermentation to butanoate 7 4 1
serotonin degradation 7 4 1
superpathway of aromatic compound degradation via 3-oxoadipate 35 19 5
benzoyl-CoA degradation I (aerobic) 7 3 1
pyruvate fermentation to butanoate 7 3 1
mevalonate pathway II (haloarchaea) 7 1 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
2-deoxy-D-ribose degradation II 8 4 1
pyruvate fermentation to butanol I 8 3 1
butanol and isobutanol biosynthesis (engineered) 8 3 1
2-methylpropene degradation 8 2 1
isoprene biosynthesis II (engineered) 8 1 1
mevalonate pathway III (Thermoplasma) 8 1 1
mevalonate pathway IV (archaea) 8 1 1
androstenedione degradation I (aerobic) 25 7 3
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 6 2
phenylacetate degradation I (aerobic) 9 9 1
4-oxopentanoate degradation 9 5 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
superpathway of fermentation (Chlamydomonas reinhardtii) 9 4 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
superpathway of testosterone and androsterone degradation 28 7 3
L-glutamate degradation V (via hydroxyglutarate) 10 5 1
3-phenylpropanoate degradation 10 4 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
L-lysine fermentation to acetate and butanoate 10 3 1
methyl tert-butyl ether degradation 10 2 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 9 4
superpathway of phenylethylamine degradation 11 11 1
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 1
ethylmalonyl-CoA pathway 11 2 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 4
superpathway of C1 compounds oxidation to CO2 12 5 1
L-glutamate degradation VII (to butanoate) 12 3 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
L-tryptophan degradation V (side chain pathway) 13 1 1
androstenedione degradation II (anaerobic) 27 5 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
L-tryptophan degradation III (eukaryotic) 15 3 1
mixed acid fermentation 16 12 1
glycerol degradation to butanol 16 9 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
heterolactic fermentation 18 12 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 9 1
toluene degradation VI (anaerobic) 18 4 1
sitosterol degradation to androstenedione 18 1 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 14 1
superpathway of anaerobic sucrose degradation 19 13 1
superpathway of N-acetylneuraminate degradation 22 12 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 5 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 1
platensimycin biosynthesis 26 6 1
superpathway of ergosterol biosynthesis I 26 3 1
1-butanol autotrophic biosynthesis (engineered) 27 19 1
superpathway of cholesterol biosynthesis 38 3 1
superpathway of L-lysine degradation 43 23 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 21 1