Experiment set12IT039 for Pseudomonas putida KT2440

Compare to:

1,4-Butanediol carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + 1,4-Butanediol (10 mM) + Dimethyl Sulfoxide (1 vol%)
Culturing: Putida_ML5_JBEI, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=700rpm
By: Matthew Incha on 12-Feb-19
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 11 genes in this experiment

For carbon source 1,4-Butanediol in Pseudomonas putida KT2440

For carbon source 1,4-Butanediol across organisms

SEED Subsystems

Subsystem #Specific
Multidrug Resistance, Tripartite Systems Found in Gram Negative Bacteria 2
Polyhydroxybutyrate metabolism 2
Acetyl-CoA fermentation to Butyrate 1
Butanol Biosynthesis 1
Fermentations: Mixed acid 1
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 1
Glycogen metabolism 1
Isoleucine degradation 1
Purine conversions 1
Universal stress protein family 1
Valine degradation 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
adenosine nucleotides degradation III 1 1 1
fatty acid β-oxidation III (unsaturated, odd number) 1 1 1
acetaldehyde biosynthesis I 1 1 1
benzoyl-CoA biosynthesis 3 3 2
fatty acid β-oxidation IV (unsaturated, even number) 5 4 3
fatty acid β-oxidation I (generic) 7 5 4
oleate β-oxidation (thioesterase-dependent, yeast) 2 2 1
pyruvate fermentation to ethanol II 2 1 1
ethanol degradation I 2 1 1
oleate β-oxidation 35 30 16
adipate degradation 5 5 2
adipate biosynthesis 5 4 2
glutaryl-CoA degradation 5 3 2
fatty acid β-oxidation II (plant peroxisome) 5 3 2
fatty acid β-oxidation V (unsaturated, odd number, di-isomerase-dependent) 5 3 2
pyruvate fermentation to hexanol (engineered) 11 8 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 4
2-methyl-branched fatty acid β-oxidation 14 10 5
fatty acid salvage 6 6 2
ethanol degradation II 3 3 1
L-isoleucine degradation I 6 5 2
valproate β-oxidation 9 7 3
propanoate fermentation to 2-methylbutanoate 6 4 2
pyruvate fermentation to butanol II (engineered) 6 4 2
L-leucine degradation III 3 2 1
L-valine degradation II 3 2 1
L-isoleucine degradation II 3 2 1
methyl ketone biosynthesis (engineered) 6 3 2
oleate β-oxidation (reductase-dependent, yeast) 3 1 1
L-methionine degradation III 3 1 1
pyruvate fermentation to ethanol I 3 1 1
pyruvate fermentation to ethanol III 3 1 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 2
pyruvate fermentation to butanoate 7 3 2
benzoyl-CoA degradation I (aerobic) 7 3 2
L-valine degradation I 8 6 2
glycogen biosynthesis I (from ADP-D-Glucose) 4 3 1
salidroside biosynthesis 4 3 1
phytol degradation 4 3 1
L-phenylalanine degradation III 4 2 1
L-tyrosine degradation III 4 2 1
pyruvate fermentation to butanol I 8 3 2
cytidine-5'-diphosphate-glycerol biosynthesis 4 1 1
oleate β-oxidation (isomerase-dependent, yeast) 4 1 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 4 3
phenylacetate degradation I (aerobic) 9 9 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 2
4-hydroxybenzoate biosynthesis III (plants) 5 5 1
ethanolamine utilization 5 4 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 4 1
pyruvate fermentation to isobutanol (engineered) 5 4 1
acetylene degradation (anaerobic) 5 3 1
phenylethanol biosynthesis 5 3 1
L-glutamate degradation V (via hydroxyglutarate) 10 5 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
3-phenylpropanoate degradation 10 4 2
(S)-propane-1,2-diol degradation 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 1
superpathway of phenylethylamine degradation 11 11 2
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 6 3
6-gingerol analog biosynthesis (engineered) 6 3 1
L-glutamate degradation VII (to butanoate) 12 3 2
noradrenaline and adrenaline degradation 13 8 2
3-methylbutanol biosynthesis (engineered) 7 6 1
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
serotonin degradation 7 4 1
Spodoptera littoralis pheromone biosynthesis 22 4 3
L-tryptophan degradation III (eukaryotic) 15 3 2
glycerol degradation to butanol 16 9 2
butanol and isobutanol biosynthesis (engineered) 8 3 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 2
2-methylpropene degradation 8 2 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 2
3-hydroxypropanoate/4-hydroxybutanate cycle 18 9 2
superpathway of fermentation (Chlamydomonas reinhardtii) 9 4 1
toluene degradation VI (anaerobic) 18 4 2
starch biosynthesis 10 5 1
methyl tert-butyl ether degradation 10 2 1
gallate degradation III (anaerobic) 11 3 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
androstenedione degradation I (aerobic) 25 7 2
platensimycin biosynthesis 26 6 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
L-tryptophan degradation V (side chain pathway) 13 1 1
1-butanol autotrophic biosynthesis (engineered) 27 19 2
androstenedione degradation II (anaerobic) 27 5 2
superpathway of testosterone and androsterone degradation 28 7 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 9 3
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 3
mixed acid fermentation 16 12 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
heterolactic fermentation 18 12 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 14 1
superpathway of anaerobic sucrose degradation 19 13 1
superpathway of N-acetylneuraminate degradation 22 12 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 5 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 1