Experiment set12IT029 for Pseudomonas putida KT2440

Compare to:

Phenylacetic acid carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + Phenylacetic acid (10 mM) + Dimethyl Sulfoxide (1 vol%)
Culturing: Putida_ML5_JBEI, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=700rpm
By: Matthew Incha on 12-Feb-19
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 20 genes in this experiment

For carbon source Phenylacetic acid in Pseudomonas putida KT2440

For carbon source Phenylacetic acid across organisms

SEED Subsystems

Subsystem #Specific
Multidrug Resistance, Tripartite Systems Found in Gram Negative Bacteria 2
Glycine and Serine Utilization 1
Glycine cleavage system 1
Photorespiration (oxidative C2 cycle) 1
Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
phenylacetate degradation I (aerobic) 9 9 8
superpathway of phenylethylamine degradation 11 11 8
benzoyl-CoA biosynthesis 3 3 2
3-oxoadipate degradation 2 2 1
(2S)-ethylmalonyl-CoA biosynthesis 4 2 2
acetoacetate degradation (to acetyl CoA) 2 1 1
2-methyl-branched fatty acid β-oxidation 14 10 6
adipate degradation 5 5 2
adipate biosynthesis 5 4 2
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
fatty acid β-oxidation II (plant peroxisome) 5 3 2
ethanol degradation IV 3 3 1
glycine cleavage 3 3 1
ketolysis 3 3 1
glycine biosynthesis II 3 3 1
ethanol degradation II 3 3 1
valproate β-oxidation 9 7 3
polyhydroxybutanoate biosynthesis 3 2 1
ethanol degradation III 3 2 1
hypotaurine degradation 3 2 1
histamine degradation 3 1 1
oleate β-oxidation 35 30 11
fatty acid β-oxidation I (generic) 7 5 2
acetyl-CoA fermentation to butanoate 7 4 2
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 2
benzoyl-CoA degradation I (aerobic) 7 3 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 3
phytol degradation 4 3 1
L-tryptophan degradation X (mammalian, via tryptamine) 4 3 1
putrescine degradation III 4 3 1
fatty acid α-oxidation I (plants) 4 2 1
phenylacetate degradation II (anaerobic) 4 1 1
penicillin G and penicillin V biosynthesis 4 1 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 2
4-hydroxybenzoate biosynthesis III (plants) 5 5 1
fatty acid β-oxidation IV (unsaturated, even number) 5 4 1
mitochondrial NADPH production (yeast) 5 4 1
octane oxidation 5 4 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 4 1
ketogenesis 5 3 1
glutaryl-CoA degradation 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
3-phenylpropanoate degradation 10 4 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
fatty acid β-oxidation VII (yeast peroxisome) 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 1
dopamine degradation 5 2 1
isopropanol biosynthesis (engineered) 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
pyruvate fermentation to acetone 5 1 1
pyruvate fermentation to hexanol (engineered) 11 8 2
ethylmalonyl-CoA pathway 11 2 2
fatty acid salvage 6 6 1
catechol degradation III (ortho-cleavage pathway) 6 6 1
L-isoleucine degradation I 6 5 1
pyruvate fermentation to butanol II (engineered) 6 4 1
propanoate fermentation to 2-methylbutanoate 6 4 1
methyl ketone biosynthesis (engineered) 6 3 1
3-methyl-branched fatty acid α-oxidation 6 3 1
4-ethylphenol degradation (anaerobic) 6 2 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
alkane oxidation 6 1 1
jasmonic acid biosynthesis 19 4 3
noradrenaline and adrenaline degradation 13 8 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 2
superpathway of salicylate degradation 7 7 1
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
4-methylcatechol degradation (ortho cleavage) 7 5 1
serotonin degradation 7 4 1
pyruvate fermentation to butanoate 7 3 1
ceramide degradation by α-oxidation 7 2 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 2
limonene degradation IV (anaerobic) 7 1 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
mevalonate pathway II (haloarchaea) 7 1 1
superpathway of NAD/NADP - NADH/NADPH interconversion (yeast) 8 7 1
2-deoxy-D-ribose degradation II 8 4 1
pyruvate fermentation to butanol I 8 3 1
aromatic biogenic amine degradation (bacteria) 8 3 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
2-methylpropene degradation 8 2 1
mevalonate pathway III (Thermoplasma) 8 1 1
mevalonate pathway IV (archaea) 8 1 1
isoprene biosynthesis II (engineered) 8 1 1
androstenedione degradation I (aerobic) 25 7 3
aromatic compounds degradation via β-ketoadipate 9 9 1
L-phenylalanine degradation IV (mammalian, via side chain) 9 6 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
4-oxopentanoate degradation 9 5 1
superpathway of testosterone and androsterone degradation 28 7 3
L-glutamate degradation V (via hydroxyglutarate) 10 5 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
L-lysine fermentation to acetate and butanoate 10 3 1
methyl tert-butyl ether degradation 10 2 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 9 4
toluene degradation III (aerobic) (via p-cresol) 11 7 1
Spodoptera littoralis pheromone biosynthesis 22 4 2
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 4
L-glutamate degradation VII (to butanoate) 12 3 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 4 1
platensimycin biosynthesis 26 6 2
androstenedione degradation II (anaerobic) 27 5 2
L-tryptophan degradation III (eukaryotic) 15 3 1
glycerol degradation to butanol 16 9 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 6 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
mandelate degradation to acetyl-CoA 18 11 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 9 1
toluene degradation VI (anaerobic) 18 4 1
sitosterol degradation to androstenedione 18 1 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 5 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 1
superpathway of ergosterol biosynthesis I 26 3 1
1-butanol autotrophic biosynthesis (engineered) 27 19 1
anaerobic aromatic compound degradation (Thauera aromatica) 27 4 1
superpathway of aerobic toluene degradation 30 13 1
superpathway of aromatic compound degradation via 3-oxoadipate 35 19 1
superpathway of cholesterol biosynthesis 38 3 1
superpathway of L-lysine degradation 43 23 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 21 1