Experiment set12IT024 for Pseudomonas putida KT2440

Compare to:

p-Coumaric acid carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + p-Coumaric acid (10 mM) + Dimethyl Sulfoxide (1 vol%)
Culturing: Putida_ML5_JBEI, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=700rpm
By: Matthew Incha on 12-Feb-19
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 12 genes in this experiment

For carbon source p-Coumaric acid in Pseudomonas putida KT2440

For carbon source p-Coumaric acid across organisms

SEED Subsystems

Subsystem #Specific
Protocatechuate branch of beta-ketoadipate pathway 7
Chloroaromatic degradation pathway 3
Catechol branch of beta-ketoadipate pathway 2
Phenylpropanoid compound degradation 2
p-Hydroxybenzoate degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
ferulate degradation 3 3 3
3-oxoadipate degradation 2 2 2
4-coumarate degradation (aerobic) 5 4 4
protocatechuate degradation II (ortho-cleavage pathway) 4 4 3
trans-caffeate degradation (aerobic) 4 3 3
benzoyl-CoA biosynthesis 3 3 2
4-hydroxybenzoate biosynthesis III (plants) 5 5 3
aromatic compounds degradation via β-ketoadipate 9 9 5
toluene degradation III (aerobic) (via p-cresol) 11 7 6
catechol degradation III (ortho-cleavage pathway) 6 6 3
vanillin and vanillate degradation II 2 2 1
4-coumarate degradation (anaerobic) 6 3 3
acetoacetate degradation (to acetyl CoA) 2 1 1
4-hydroxybenzoate biosynthesis IV (plants) 2 1 1
vanillin and vanillate degradation I 2 1 1
superpathway of salicylate degradation 7 7 3
2-methyl-branched fatty acid β-oxidation 14 10 6
4-methylcatechol degradation (ortho cleavage) 7 5 3
adipate degradation 5 5 2
adipate biosynthesis 5 4 2
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
fatty acid β-oxidation II (plant peroxisome) 5 3 2
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 2
ketolysis 3 3 1
valproate β-oxidation 9 7 3
polyhydroxybutanoate biosynthesis 3 2 1
umbelliferone biosynthesis 3 2 1
4-hydroxymandelate degradation 6 2 2
1,3-dimethylbenzene degradation to 3-methylbenzoate 3 1 1
1,4-dimethylbenzene degradation to 4-methylbenzoate 3 1 1
3-chlorotoluene degradation II 3 1 1
D-phenylglycine degradation 3 1 1
caffeoylglucarate biosynthesis 3 1 1
toluene degradation to benzoate 3 1 1
oleate β-oxidation 35 30 11
fatty acid β-oxidation I (generic) 7 5 2
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 2
benzoyl-CoA degradation I (aerobic) 7 3 2
capsaicin biosynthesis 7 3 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 3
catechol degradation to β-ketoadipate 4 4 1
(2S)-ethylmalonyl-CoA biosynthesis 4 2 1
4-sulfocatechol degradation 4 2 1
4-chlorobenzoate degradation 4 2 1
naringenin biosynthesis (engineered) 4 1 1
xanthohumol biosynthesis 4 1 1
benzoate biosynthesis II (CoA-independent, non-β-oxidative) 4 1 1
4-methylphenol degradation to protocatechuate 4 1 1
hydroxycinnamate sugar acid ester biosynthesis 4 1 1
superpathway of aerobic toluene degradation 30 13 7
superpathway of aromatic compound degradation via 3-oxoadipate 35 19 8
phenylacetate degradation I (aerobic) 9 9 2
mandelate degradation to acetyl-CoA 18 11 4
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 2
gallate degradation II 5 4 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 4 1
fatty acid β-oxidation IV (unsaturated, even number) 5 4 1
ketogenesis 5 3 1
glutaryl-CoA degradation 5 3 1
3-phenylpropanoate degradation 10 4 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
bisphenol A degradation 5 2 1
fatty acid β-oxidation VII (yeast peroxisome) 5 2 1
4-hydroxybenzoate biosynthesis I (eukaryotes) 5 2 1
flavonoid biosynthesis 5 1 1
mandelate degradation I 5 1 1
phaselate biosynthesis 5 1 1
chlorogenic acid biosynthesis II 5 1 1
isopropanol biosynthesis (engineered) 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
pyruvate fermentation to acetone 5 1 1
superpathway of phenylethylamine degradation 11 11 2
pyruvate fermentation to hexanol (engineered) 11 8 2
fatty acid salvage 6 6 1
L-isoleucine degradation I 6 5 1
pyruvate fermentation to butanol II (engineered) 6 4 1
propanoate fermentation to 2-methylbutanoate 6 4 1
6-gingerol analog biosynthesis (engineered) 6 3 1
methyl ketone biosynthesis (engineered) 6 3 1
4-ethylphenol degradation (anaerobic) 6 2 1
salicin biosynthesis 6 1 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
jasmonic acid biosynthesis 19 4 3
coumarins biosynthesis (engineered) 13 4 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
acetyl-CoA fermentation to butanoate 7 4 1
pyruvate fermentation to butanoate 7 3 1
spongiadioxin C biosynthesis 7 2 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 2
mevalonate pathway II (haloarchaea) 7 1 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
2-deoxy-D-ribose degradation II 8 4 1
pyruvate fermentation to butanol I 8 3 1
2-methylpropene degradation 8 2 1
polybrominated dihydroxylated diphenyl ethers biosynthesis 8 2 1
mevalonate pathway IV (archaea) 8 1 1
mevalonate pathway III (Thermoplasma) 8 1 1
chlorogenic acid biosynthesis I 8 1 1
isoprene biosynthesis II (engineered) 8 1 1
androstenedione degradation I (aerobic) 25 7 3
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
4-oxopentanoate degradation 9 5 1
avenanthramide biosynthesis 9 1 1
superpathway of testosterone and androsterone degradation 28 7 3
superpathway of vanillin and vanillate degradation 10 7 1
L-glutamate degradation V (via hydroxyglutarate) 10 5 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
L-lysine fermentation to acetate and butanoate 10 3 1
suberin monomers biosynthesis 20 4 2
pinoresinol degradation 10 2 1
methyl tert-butyl ether degradation 10 2 1
rosmarinic acid biosynthesis I 10 2 1
curcuminoid biosynthesis 10 1 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 9 4
Spodoptera littoralis pheromone biosynthesis 22 4 2
ethylmalonyl-CoA pathway 11 2 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 4
L-glutamate degradation VII (to butanoate) 12 3 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
toluene degradation IV (aerobic) (via catechol) 13 6 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 4 1
platensimycin biosynthesis 26 6 2
Amaryllidacea alkaloids biosynthesis 26 3 2
androstenedione degradation II (anaerobic) 27 5 2
superpathway of aromatic compound degradation via 2-hydroxypentadienoate 42 13 3
superpathway of rosmarinic acid biosynthesis 14 2 1
flavonoid di-C-glucosylation 15 3 1
L-tryptophan degradation III (eukaryotic) 15 3 1
monolignol biosynthesis 15 1 1
glycerol degradation to butanol 16 9 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 6 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 9 1
toluene degradation VI (anaerobic) 18 4 1
sitosterol degradation to androstenedione 18 1 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 5 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 1
superpathway of ergosterol biosynthesis I 26 3 1
1-butanol autotrophic biosynthesis (engineered) 27 19 1
superpathway of cholesterol biosynthesis 38 3 1
superpathway of L-lysine degradation 43 23 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 21 1