Experiment set12IT006 for Pseudomonas putida KT2440
Beta-alanine carbon source
Group: carbon sourceMedia: MOPS minimal media_noCarbon + Beta-alanine (10 mM) + Dimethyl Sulfoxide (1 vol%)
Culturing: Putida_ML5_JBEI, 96 deep-well microplate; 1.2 mL volume, Aerobic, at 30 (C), shaken=700rpm
By: Matthew Incha on 12-Feb-19
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate
Specific Phenotypes
For 18 genes in this experiment
For carbon source Beta-alanine in Pseudomonas putida KT2440
For carbon source Beta-alanine across organisms
SEED Subsystems
Metabolic Maps
Color code by fitness: see overview map or list of maps.
Maps containing gene(s) with specific phenotypes:
- Valine, leucine and isoleucine degradation
- Arginine and proline metabolism
- Propanoate metabolism
- Fructose and mannose metabolism
- Ascorbate and aldarate metabolism
- Glutamate metabolism
- Alanine and aspartate metabolism
- Glycine, serine and threonine metabolism
- Phenylalanine metabolism
- Tryptophan metabolism
- beta-Alanine metabolism
- Aminosugars metabolism
- Lipopolysaccharide biosynthesis
- Inositol phosphate metabolism
- Ether lipid metabolism
- Sphingolipid metabolism
- Thiamine metabolism
- Riboflavin metabolism
- Nicotinate and nicotinamide metabolism
- Nitrogen metabolism
- Biosynthesis of siderophore group nonribosomal peptides
MetaCyc Pathways
Pathways that contain genes with specific phenotypes:
Pathway | #Steps | #Present | #Specific |
---|---|---|---|
β-alanine degradation II | 2 | 2 | 2 |
L-proline degradation I | 3 | 3 | 2 |
L-alanine degradation I | 2 | 2 | 1 |
β-alanine degradation I | 2 | 1 | 1 |
glycine biosynthesis II | 3 | 3 | 1 |
glycine cleavage | 3 | 3 | 1 |
L-arginine degradation I (arginase pathway) | 3 | 2 | 1 |
ethene biosynthesis II (microbes) | 4 | 1 | 1 |
acrylate degradation I | 5 | 3 | 1 |
propanoyl-CoA degradation II | 5 | 3 | 1 |
β-alanine biosynthesis II | 6 | 5 | 1 |
(5R)-carbapenem carboxylate biosynthesis | 6 | 1 | 1 |
L-Nδ-acetylornithine biosynthesis | 7 | 5 | 1 |
myo-inositol degradation I | 7 | 1 | 1 |
2,4-dinitrotoluene degradation | 7 | 1 | 1 |
L-citrulline biosynthesis | 8 | 7 | 1 |
L-valine degradation I | 8 | 6 | 1 |
superpathway of coenzyme A biosynthesis II (plants) | 10 | 9 | 1 |
myo-, chiro- and scyllo-inositol degradation | 10 | 1 | 1 |
superpathway of L-citrulline metabolism | 12 | 9 | 1 |