Experiment set11IT021 for Agrobacterium fabrum C58

Compare to:

Phloretic Acid carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + 4-Hydroxyphenylpropionic acid (2.5 mM), pH=7
Culturing: Agro_ML11, 24-well plate, Aerobic, at 28 (C), shaken=200 rpm
By: Mitchell Thompson on 1/6/22
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 16 genes in this experiment

For carbon source 4-Hydroxyphenylpropionic acid in Agrobacterium fabrum C58

For carbon source 4-Hydroxyphenylpropionic acid across organisms

SEED Subsystems

Subsystem #Specific
Protocatechuate branch of beta-ketoadipate pathway 4
Catechol branch of beta-ketoadipate pathway 3
Chloroaromatic degradation pathway 3
Homogentisate pathway of aromatic compound degradation 1
Pyrimidine utilization 1
p-Hydroxybenzoate degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
3-oxoadipate degradation 2 2 2
adipate degradation 5 5 4
benzoyl-CoA biosynthesis 3 3 2
adipate biosynthesis 5 4 3
oleate β-oxidation 35 27 19
protocatechuate degradation II (ortho-cleavage pathway) 4 4 2
fatty acid salvage 6 5 3
catechol degradation III (ortho-cleavage pathway) 6 5 3
acetoacetate degradation (to acetyl CoA) 2 1 1
toluene degradation III (aerobic) (via p-cresol) 11 7 5
aromatic compounds degradation via β-ketoadipate 9 8 4
valproate β-oxidation 9 5 4
superpathway of salicylate degradation 7 6 3
2-methyl-branched fatty acid β-oxidation 14 9 6
4-methylcatechol degradation (ortho cleavage) 7 3 3
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 5 2
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
4-hydroxybenzoate biosynthesis III (plants) 5 3 2
fatty acid β-oxidation II (plant peroxisome) 5 3 2
glutaryl-CoA degradation 5 3 2
pyruvate fermentation to hexanol (engineered) 11 7 4
pyruvate fermentation to butanol II (engineered) 6 4 2
L-isoleucine degradation I 6 4 2
ketolysis 3 2 1
polyhydroxybutanoate biosynthesis 3 2 1
propanoate fermentation to 2-methylbutanoate 6 3 2
ferulate degradation 3 1 1
fatty acid β-oxidation I (generic) 7 4 2
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 2
benzoyl-CoA degradation I (aerobic) 7 3 2
pyruvate fermentation to butanoate 7 3 2
catechol degradation to β-ketoadipate 4 3 1
pyruvate fermentation to butanol I 8 4 2
(2S)-ethylmalonyl-CoA biosynthesis 4 2 1
2-methylpropene degradation 8 3 2
4-methylphenol degradation to protocatechuate 4 1 1
4-chlorobenzoate degradation 4 1 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 2
phenylacetate degradation I (aerobic) 9 3 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 3 2
4-coumarate degradation (aerobic) 5 3 1
ketogenesis 5 3 1
L-glutamate degradation V (via hydroxyglutarate) 10 4 2
3-phenylpropanoate degradation 10 4 2
bisphenol A degradation 5 2 1
methyl tert-butyl ether degradation 10 3 2
androstenedione degradation I (aerobic) 25 6 5
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 2 2
ethylbenzene degradation (anaerobic) 5 1 1
isopropanol biosynthesis (engineered) 5 1 1
pyruvate fermentation to acetone 5 1 1
fatty acid β-oxidation VII (yeast peroxisome) 5 1 1
dibenzothiophene desulfurization 5 1 1
superpathway of phenylethylamine degradation 11 3 2
superpathway of testosterone and androsterone degradation 28 6 5
adenosylcobinamide-GDP biosynthesis from cobyrinate a,c-diamide 6 6 1
methyl ketone biosynthesis (engineered) 6 3 1
mandelate degradation to acetyl-CoA 18 8 3
superpathway of aerobic toluene degradation 30 12 5
L-glutamate degradation VII (to butanoate) 12 4 2
4-ethylphenol degradation (anaerobic) 6 2 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 7
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
4-hydroxymandelate degradation 6 1 1
jasmonic acid biosynthesis 19 4 3
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 5 2
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 8 7
androstenedione degradation II (anaerobic) 27 4 4
superpathway of glyoxylate cycle and fatty acid degradation 14 12 2
superpathway of aromatic compound degradation via 3-oxoadipate 35 15 5
acetyl-CoA fermentation to butanoate 7 2 1
mevalonate pathway II (haloarchaea) 7 1 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
spongiadioxin C biosynthesis 7 1 1
L-tryptophan degradation III (eukaryotic) 15 4 2
glycerol degradation to butanol 16 11 2
bacterial bioluminescence 8 4 1
2-deoxy-D-ribose degradation II 8 2 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 3 2
mevalonate pathway IV (archaea) 8 1 1
polybrominated dihydroxylated diphenyl ethers biosynthesis 8 1 1
isoprene biosynthesis II (engineered) 8 1 1
mevalonate pathway III (Thermoplasma) 8 1 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 5 2
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 3 2
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 2
3-hydroxypropanoate/4-hydroxybutanate cycle 18 11 2
4-oxopentanoate degradation 9 2 1
toluene degradation VI (anaerobic) 18 3 2
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
L-lysine fermentation to acetate and butanoate 10 2 1
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 1
ethylmalonyl-CoA pathway 11 3 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 2
10-cis-heptadecenoyl-CoA degradation (yeast) 12 1 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 1 1
superpathway of cholesterol degradation III (oxidase) 49 4 4
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 2
platensimycin biosynthesis 26 6 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
1-butanol autotrophic biosynthesis (engineered) 27 18 2
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
sitosterol degradation to androstenedione 18 1 1
suberin monomers biosynthesis 20 3 1
superpathway of ergosterol biosynthesis I 26 3 1
adenosylcobalamin biosynthesis II (aerobic) 33 29 1
adenosylcobalamin biosynthesis I (anaerobic) 36 26 1
superpathway of cholesterol biosynthesis 38 3 1
superpathway of aromatic compound degradation via 2-hydroxypentadienoate 42 11 1
superpathway of L-lysine degradation 43 10 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 18 1