Experiment set10IT096 for Agrobacterium fabrum C58

Compare to:

Ferulic Acid carbon source

Group: carbon source
Media: MOPS Media + Ferulic Acid (2.5 mM), pH=7
Culturing: Agro_ML11, 24-well plate, Aerobic, at 28 (C), shaken=200 rpm
By: Mitchell Thompson on 1/6/22

Specific Phenotypes

For 12 genes in this experiment

For carbon source Ferulic Acid in Agrobacterium fabrum C58

For carbon source Ferulic Acid across organisms

SEED Subsystems

Subsystem #Specific
Protocatechuate branch of beta-ketoadipate pathway 5
Catechol branch of beta-ketoadipate pathway 3
Chloroaromatic degradation pathway 3
Biogenesis of cytochrome c oxidases 1
Cobalt-zinc-cadmium resistance 1
Methionine Biosynthesis 1
One-carbon metabolism by tetrahydropterines 1
Serine-glyoxylate cycle 1
Terminal cytochrome C oxidases 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
3-oxoadipate degradation 2 2 2
protocatechuate degradation II (ortho-cleavage pathway) 4 4 3
aromatic compounds degradation via β-ketoadipate 9 8 5
catechol degradation III (ortho-cleavage pathway) 6 5 3
acetoacetate degradation (to acetyl CoA) 2 1 1
arsenite to oxygen electron transfer 2 1 1
toluene degradation III (aerobic) (via p-cresol) 11 7 5
superpathway of salicylate degradation 7 6 3
4-methylcatechol degradation (ortho cleavage) 7 3 3
adipate degradation 5 5 2
adipate biosynthesis 5 4 2
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
benzoyl-CoA biosynthesis 3 3 1
polyhydroxybutanoate biosynthesis 3 2 1
ketolysis 3 2 1
arsenite to oxygen electron transfer (via azurin) 3 1 1
catechol degradation to β-ketoadipate 4 3 1
aerobic respiration I (cytochrome c) 4 3 1
aerobic respiration II (cytochrome c) (yeast) 4 2 1
(2S)-ethylmalonyl-CoA biosynthesis 4 2 1
4-sulfocatechol degradation 4 2 1
oleate β-oxidation 35 27 8
valproate β-oxidation 9 5 2
2-methyl-branched fatty acid β-oxidation 14 9 3
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 5 1
4-hydroxybenzoate biosynthesis III (plants) 5 3 1
ketogenesis 5 3 1
glutaryl-CoA degradation 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 2 2
isopropanol biosynthesis (engineered) 5 1 1
pyruvate fermentation to acetone 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
fatty acid β-oxidation VII (yeast peroxisome) 5 1 1
pyruvate fermentation to hexanol (engineered) 11 7 2
fatty acid salvage 6 5 1
pyruvate fermentation to butanol II (engineered) 6 4 1
L-isoleucine degradation I 6 4 1
propanoate fermentation to 2-methylbutanoate 6 3 1
mandelate degradation to acetyl-CoA 18 8 3
superpathway of aerobic toluene degradation 30 12 5
Fe(II) oxidation 6 2 1
4-ethylphenol degradation (anaerobic) 6 2 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
jasmonic acid biosynthesis 19 4 3
fatty acid β-oxidation I (generic) 7 4 1
superpathway of aromatic compound degradation via 3-oxoadipate 35 15 5
pyruvate fermentation to butanoate 7 3 1
benzoyl-CoA degradation I (aerobic) 7 3 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 1
acetyl-CoA fermentation to butanoate 7 2 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
mevalonate pathway II (haloarchaea) 7 1 1
pyruvate fermentation to butanol I 8 4 1
2-methylpropene degradation 8 3 1
2-deoxy-D-ribose degradation II 8 2 1
isoprene biosynthesis II (engineered) 8 1 1
mevalonate pathway IV (archaea) 8 1 1
mevalonate pathway III (Thermoplasma) 8 1 1
androstenedione degradation I (aerobic) 25 6 3
phenylacetate degradation I (aerobic) 9 3 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 3 1
4-oxopentanoate degradation 9 2 1
superpathway of testosterone and androsterone degradation 28 6 3
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
3-phenylpropanoate degradation 10 4 1
L-glutamate degradation V (via hydroxyglutarate) 10 4 1
methyl tert-butyl ether degradation 10 3 1
L-lysine fermentation to acetate and butanoate 10 2 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 1
ethylmalonyl-CoA pathway 11 3 1
superpathway of phenylethylamine degradation 11 3 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 8 4
L-glutamate degradation VII (to butanoate) 12 4 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 1 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 1 1
folate transformations I 13 8 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 5 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
androstenedione degradation II (anaerobic) 27 4 2
superpathway of glyoxylate cycle and fatty acid degradation 14 12 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
L-tryptophan degradation III (eukaryotic) 15 4 1
glycerol degradation to butanol 16 11 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 3 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 5 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 3 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 11 1
toluene degradation VI (anaerobic) 18 3 1
sitosterol degradation to androstenedione 18 1 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 4 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 1
platensimycin biosynthesis 26 6 1
superpathway of ergosterol biosynthesis I 26 3 1
1-butanol autotrophic biosynthesis (engineered) 27 18 1
superpathway of cholesterol biosynthesis 38 3 1
superpathway of L-lysine degradation 43 10 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 18 1