Experiment set10IT064 for Escherichia coli BW25113

Compare to:

LB Anaerobic with Vancomycin Hydrochloride from Streptomyces orientalis 0.00003125 mM

Group: stress
Media: LB + Vancomycin Hydrochloride from Streptomyces orientalis (3.13E-02 mM)
Culturing: Keio_ML9a, 96 deep-well microplate; Multitron, Anaerobic, at 37 (C), shaken=0 rpm
By: Hans_Hualan on 7/20/2015
Media components: 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L Sodium Chloride

Specific Phenotypes

For 48 genes in this experiment

For stress Vancomycin Hydrochloride from Streptomyces orientalis in Escherichia coli BW25113

For stress Vancomycin Hydrochloride from Streptomyces orientalis across organisms

SEED Subsystems

Subsystem #Specific
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 4
Respiratory dehydrogenases 1 3
Glycerol and Glycerol-3-phosphate Uptake and Utilization 2
Iron acquisition in Vibrio 2
KDO2-Lipid A biosynthesis 2
Transport of Iron 2
Beta-Glucoside Metabolism 1
Biotin biosynthesis 1
Campylobacter Iron Metabolism 1
Conserved gene cluster associated with Met-tRNA formyltransferase 1
D-Tagatose and Galactitol Utilization 1
Flagellum 1
Glycogen metabolism 1
Maltose and Maltodextrin Utilization 1
Peptidoglycan Biosynthesis 1
Synechocystis experimental 1
Triacylglycerol metabolism 1
Type IV pilus 1
n-Phenylalkanoic acid degradation 1
tRNA processing 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
cardiolipin biosynthesis I 3 3 2
cardiolipin biosynthesis II 3 3 2
neolinustatin bioactivation 3 2 2
nitrate reduction IX (dissimilatory) 2 2 1
glycerophosphodiester degradation 2 2 1
glycerol-3-phosphate to fumarate electron transfer 2 2 1
pseudouridine degradation 2 2 1
glycerol-3-phosphate shuttle 2 2 1
glycerol-3-phosphate to hydrogen peroxide electron transport 2 2 1
linustatin bioactivation 4 2 2
lotaustralin degradation 2 1 1
glycerol-3-phosphate to cytochrome bo oxidase electron transfer 2 1 1
linoleate biosynthesis II (animals) 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
linamarin degradation 2 1 1
glycerol 3-phosphate to cytochrome aa3 oxidase electron transfer 2 1 1
cinnamoyl-CoA biosynthesis 2 1 1
cardiolipin biosynthesis III 3 3 1
sn-glycerol 3-phosphate anaerobic respiration 3 3 1
glycerol degradation I 3 3 1
cellulose degradation II (fungi) 3 2 1
3-methyl-branched fatty acid α-oxidation 6 3 2
alkane biosynthesis I 3 1 1
alkane biosynthesis II 3 1 1
oleate biosynthesis I (plants) 3 1 1
heptadecane biosynthesis 3 1 1
glycerol and glycerophosphodiester degradation 4 4 1
cardiolipin and phosphatidylethanolamine biosynthesis (Xanthomonas) 4 3 1
phytol degradation 4 3 1
starch degradation V 4 3 1
phosphatidylcholine acyl editing 4 2 1
phospholipid remodeling (phosphatidylethanolamine, yeast) 4 2 1
long chain fatty acid ester synthesis (engineered) 4 1 1
pinosylvin metabolism 4 1 1
wax esters biosynthesis II 4 1 1
superpathway of cardiolipin biosynthesis (bacteria) 13 11 3
sporopollenin precursors biosynthesis 18 5 4
galactitol degradation 5 5 1
CMP-3-deoxy-D-manno-octulosonate biosynthesis 5 5 1
5,6-dehydrokavain biosynthesis (engineered) 10 8 2
peptidoglycan recycling II 10 7 2
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
coumarin biosynthesis (via 2-coumarate) 5 2 1
octane oxidation 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 1
superpathway of phospholipid biosynthesis III (E. coli) 12 12 2
phosphatidylglycerol biosynthesis II 6 6 1
phosphatidylglycerol biosynthesis I 6 6 1
stearate biosynthesis II (bacteria and plants) 6 5 1
fatty acid salvage 6 5 1
stearate biosynthesis IV 6 4 1
6-gingerol analog biosynthesis (engineered) 6 2 1
stearate biosynthesis I (animals) 6 1 1
α-tomatine degradation 6 1 1
peptidoglycan recycling I 14 14 2
CMP-8-amino-3,8-dideoxy-D-manno-octulosonate biosynthesis 7 4 1
ceramide degradation by α-oxidation 7 2 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
glycogen degradation I 8 8 1
sucrose biosynthesis II 8 6 1
2-deoxy-D-ribose degradation II 8 3 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 4 1
starch degradation II 9 1 1
3-phenylpropanoate degradation 10 4 1
suberin monomers biosynthesis 20 3 2
superpathway of fatty acid biosynthesis II (plant) 43 38 4
mycobactin biosynthesis 11 3 1
firefly bioluminescence 14 2 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 2 1
superpathway of (Kdo)2-lipid A biosynthesis 17 17 1
type I lipoteichoic acid biosynthesis (S. aureus) 17 5 1
superpathway of hexitol degradation (bacteria) 18 18 1
superpathway of Kdo2-lipid A biosynthesis 25 24 1
superpathway of fatty acids biosynthesis (E. coli) 53 51 2
superpathway of phospholipid biosynthesis II (plants) 28 10 1
palmitate biosynthesis III 29 21 1
oleate β-oxidation 35 32 1