Experiment set10IT064 for Escherichia coli BW25113

Compare to:

LB Anaerobic with Vancomycin Hydrochloride from Streptomyces orientalis 0.00003125 mM

Group: stress
Media: LB + Vancomycin Hydrochloride from Streptomyces orientalis (3.13E-02 mM)
Culturing: Keio_ML9a, 96 deep-well microplate; Multitron, Anaerobic, at 37 (C), shaken=0 rpm
By: Hans_Hualan on 7/20/2015
Media components: 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L Sodium Chloride

Specific Phenotypes

For 48 genes in this experiment

For stress Vancomycin Hydrochloride from Streptomyces orientalis in Escherichia coli BW25113

For stress Vancomycin Hydrochloride from Streptomyces orientalis across organisms

SEED Subsystems

Subsystem #Specific
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 4
Respiratory dehydrogenases 1 3
Glycerol and Glycerol-3-phosphate Uptake and Utilization 2
Iron acquisition in Vibrio 2
KDO2-Lipid A biosynthesis 2
Transport of Iron 2
Beta-Glucoside Metabolism 1
Biotin biosynthesis 1
Campylobacter Iron Metabolism 1
Conserved gene cluster associated with Met-tRNA formyltransferase 1
D-Tagatose and Galactitol Utilization 1
Flagellum 1
Glycogen metabolism 1
Maltose and Maltodextrin Utilization 1
Peptidoglycan Biosynthesis 1
Synechocystis experimental 1
Triacylglycerol metabolism 1
Type IV pilus 1
n-Phenylalkanoic acid degradation 1
tRNA processing 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
cardiolipin biosynthesis I 3 3 2
cardiolipin biosynthesis II 3 3 2
neolinustatin bioactivation 3 2 2
glycerol-3-phosphate to hydrogen peroxide electron transport 2 2 1
pseudouridine degradation 2 2 1
glycerol-3-phosphate to fumarate electron transfer 2 2 1
nitrate reduction IX (dissimilatory) 2 2 1
glycerophosphodiester degradation 2 2 1
glycerol-3-phosphate shuttle 2 2 1
linustatin bioactivation 4 2 2
linoleate biosynthesis II (animals) 2 1 1
glycerol-3-phosphate to cytochrome bo oxidase electron transfer 2 1 1
cinnamoyl-CoA biosynthesis 2 1 1
lotaustralin degradation 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
glycerol 3-phosphate to cytochrome aa3 oxidase electron transfer 2 1 1
linamarin degradation 2 1 1
glycerol degradation I 3 3 1
cardiolipin biosynthesis III 3 3 1
sn-glycerol 3-phosphate anaerobic respiration 3 3 1
cellulose degradation II (fungi) 3 2 1
3-methyl-branched fatty acid α-oxidation 6 3 2
alkane biosynthesis I 3 1 1
alkane biosynthesis II 3 1 1
heptadecane biosynthesis 3 1 1
oleate biosynthesis I (plants) 3 1 1
glycerol and glycerophosphodiester degradation 4 4 1
cardiolipin and phosphatidylethanolamine biosynthesis (Xanthomonas) 4 3 1
starch degradation V 4 3 1
phytol degradation 4 3 1
phosphatidylcholine acyl editing 4 2 1
phospholipid remodeling (phosphatidylethanolamine, yeast) 4 2 1
wax esters biosynthesis II 4 1 1
pinosylvin metabolism 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
superpathway of cardiolipin biosynthesis (bacteria) 13 11 3
sporopollenin precursors biosynthesis 18 5 4
CMP-3-deoxy-D-manno-octulosonate biosynthesis 5 5 1
galactitol degradation 5 5 1
5,6-dehydrokavain biosynthesis (engineered) 10 8 2
peptidoglycan recycling II 10 7 2
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
octane oxidation 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 1
coumarin biosynthesis (via 2-coumarate) 5 2 1
superpathway of phospholipid biosynthesis III (E. coli) 12 12 2
phosphatidylglycerol biosynthesis I 6 6 1
phosphatidylglycerol biosynthesis II 6 6 1
stearate biosynthesis II (bacteria and plants) 6 5 1
fatty acid salvage 6 5 1
stearate biosynthesis IV 6 4 1
6-gingerol analog biosynthesis (engineered) 6 2 1
stearate biosynthesis I (animals) 6 1 1
α-tomatine degradation 6 1 1
peptidoglycan recycling I 14 14 2
CMP-8-amino-3,8-dideoxy-D-manno-octulosonate biosynthesis 7 4 1
ceramide degradation by α-oxidation 7 2 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
glycogen degradation I 8 8 1
sucrose biosynthesis II 8 6 1
2-deoxy-D-ribose degradation II 8 3 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 4 1
starch degradation II 9 1 1
3-phenylpropanoate degradation 10 4 1
suberin monomers biosynthesis 20 3 2
superpathway of fatty acid biosynthesis II (plant) 43 38 4
mycobactin biosynthesis 11 3 1
firefly bioluminescence 14 2 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 2 1
superpathway of (Kdo)2-lipid A biosynthesis 17 17 1
type I lipoteichoic acid biosynthesis (S. aureus) 17 5 1
superpathway of hexitol degradation (bacteria) 18 18 1
superpathway of Kdo2-lipid A biosynthesis 25 24 1
superpathway of fatty acids biosynthesis (E. coli) 53 51 2
superpathway of phospholipid biosynthesis II (plants) 28 10 1
palmitate biosynthesis III 29 21 1
oleate β-oxidation 35 32 1