Experiment set10IT040 for Agrobacterium fabrum C58

Compare to:

2-6-dihydroxybenzoic acid carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + 2-6-dihydroxybenzoic acid (2.5 mM), pH=7
Culturing: Agro_ML11, 24-well plate, Aerobic, at 28 (C), shaken=200 rpm
By: Mitchell Thompson on 1/6/22
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 5 genes in this experiment

For carbon source 2-6-dihydroxybenzoic acid in Agrobacterium fabrum C58

For carbon source 2-6-dihydroxybenzoic acid across organisms

SEED Subsystems

Subsystem #Specific
Catechol branch of beta-ketoadipate pathway 2
Chloroaromatic degradation pathway 2
Protocatechuate branch of beta-ketoadipate pathway 2
Fermentations: Mixed acid 1
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
3-oxoadipate degradation 2 2 2
acetaldehyde biosynthesis I 1 1 1
γ-resorcylate degradation I 4 4 2
γ-resorcylate degradation II 4 3 2
ethanol degradation I 2 1 1
acetoacetate degradation (to acetyl CoA) 2 1 1
pyruvate fermentation to ethanol II 2 1 1
adipate degradation 5 5 2
adipate biosynthesis 5 4 2
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
ethanol degradation II 3 3 1
benzoyl-CoA biosynthesis 3 3 1
catechol degradation III (ortho-cleavage pathway) 6 5 2
ketolysis 3 2 1
resorcinol degradation 3 2 1
L-isoleucine degradation II 3 2 1
L-leucine degradation III 3 2 1
L-valine degradation II 3 2 1
polyhydroxybutanoate biosynthesis 3 2 1
L-methionine degradation III 3 1 1
pyruvate fermentation to ethanol I 3 1 1
pyruvate fermentation to ethanol III 3 1 1
superpathway of salicylate degradation 7 6 2
4-methylcatechol degradation (ortho cleavage) 7 3 2
phytol degradation 4 3 1
(2S)-ethylmalonyl-CoA biosynthesis 4 2 1
4-sulfocatechol degradation 4 2 1
L-tyrosine degradation III 4 2 1
L-phenylalanine degradation III 4 2 1
4-aminophenol degradation 4 2 1
2-amino-3-carboxymuconate semialdehyde degradation to 2-hydroxypentadienoate 4 1 1
salidroside biosynthesis 4 1 1
cytidine-5'-diphosphate-glycerol biosynthesis 4 1 1
oleate β-oxidation 35 27 8
aromatic compounds degradation via β-ketoadipate 9 8 2
valproate β-oxidation 9 5 2
2-methyl-branched fatty acid β-oxidation 14 9 3
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 5 1
pyruvate fermentation to isobutanol (engineered) 5 4 1
glutaryl-CoA degradation 5 3 1
4-chlorocatechol degradation 5 3 1
4-hydroxybenzoate biosynthesis III (plants) 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
ketogenesis 5 3 1
4-nitrophenol degradation II 5 2 1
3-chlorocatechol degradation I (ortho) 5 2 1
3-chlorocatechol degradation II (ortho) 5 2 1
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 2 2
4-nitrophenol degradation I 5 1 1
fatty acid β-oxidation VII (yeast peroxisome) 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
pyruvate fermentation to acetone 5 1 1
phenylethanol biosynthesis 5 1 1
isopropanol biosynthesis (engineered) 5 1 1
2-amino-3-carboxymuconate semialdehyde degradation to glutaryl-CoA 5 1 1
4-hydroxyacetophenone degradation 5 1 1
acetylene degradation (anaerobic) 5 1 1
ethanolamine utilization 5 1 1
(S)-propane-1,2-diol degradation 5 1 1
pyruvate fermentation to hexanol (engineered) 11 7 2
toluene degradation III (aerobic) (via p-cresol) 11 7 2
fatty acid salvage 6 5 1
L-isoleucine degradation I 6 4 1
pyruvate fermentation to butanol II (engineered) 6 4 1
propanoate fermentation to 2-methylbutanoate 6 3 1
4-ethylphenol degradation (anaerobic) 6 2 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
jasmonic acid biosynthesis 19 4 3
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 5 2
noradrenaline and adrenaline degradation 13 4 2
3-methylbutanol biosynthesis (engineered) 7 6 1
4,5-dichlorocatechol degradation 7 4 1
fatty acid β-oxidation I (generic) 7 4 1
pyruvate fermentation to butanoate 7 3 1
benzoyl-CoA degradation I (aerobic) 7 3 1
chlorosalicylate degradation 7 3 1
2,4,6-trichlorophenol degradation 7 3 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 1
serotonin degradation 7 3 1
acetyl-CoA fermentation to butanoate 7 2 1
2-nitrobenzoate degradation I 7 2 1
mevalonate pathway II (haloarchaea) 7 1 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
L-tryptophan degradation III (eukaryotic) 15 4 2
pyruvate fermentation to butanol I 8 4 1
3,5-dichlorocatechol degradation 8 4 1
2-methylpropene degradation 8 3 1
butanol and isobutanol biosynthesis (engineered) 8 3 1
2-deoxy-D-ribose degradation II 8 2 1
mevalonate pathway IV (archaea) 8 1 1
mevalonate pathway III (Thermoplasma) 8 1 1
isoprene biosynthesis II (engineered) 8 1 1
androstenedione degradation I (aerobic) 25 6 3
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 5 2
3,4,6-trichlorocatechol degradation 9 5 1
2,4,5-trichlorophenoxyacetate degradation 9 5 1
mandelate degradation to acetyl-CoA 18 8 2
1,4-dichlorobenzene degradation 9 4 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 3 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
phenylacetate degradation I (aerobic) 9 3 1
superpathway of fermentation (Chlamydomonas reinhardtii) 9 3 1
4-oxopentanoate degradation 9 2 1
superpathway of testosterone and androsterone degradation 28 6 3
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
L-glutamate degradation V (via hydroxyglutarate) 10 4 1
pentachlorophenol degradation 10 4 1
3-phenylpropanoate degradation 10 4 1
methyl tert-butyl ether degradation 10 3 1
pinoresinol degradation 10 2 1
L-lysine fermentation to acetate and butanoate 10 2 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 1
γ-hexachlorocyclohexane degradation 11 6 1
ethylmalonyl-CoA pathway 11 3 1
superpathway of phenylethylamine degradation 11 3 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 8 4
L-glutamate degradation VII (to butanoate) 12 4 1
L-tryptophan degradation XII (Geobacillus) 12 2 1
L-tryptophan degradation IX 12 2 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 1 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 1 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
L-tryptophan degradation V (side chain pathway) 13 1 1
androstenedione degradation II (anaerobic) 27 4 2
superpathway of glyoxylate cycle and fatty acid degradation 14 12 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
superpathway of aerobic toluene degradation 30 12 2
glycerol degradation to butanol 16 11 1
mixed acid fermentation 16 9 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 3 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 3 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
superpathway of aromatic compound degradation via 3-oxoadipate 35 15 2
heterolactic fermentation 18 12 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 11 1
toluene degradation VI (anaerobic) 18 3 1
sitosterol degradation to androstenedione 18 1 1
superpathway of anaerobic sucrose degradation 19 13 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 10 1
superpathway of N-acetylneuraminate degradation 22 12 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
L-tryptophan degradation XI (mammalian, via kynurenine) 23 4 1
superpathway of cholesterol degradation III (oxidase) 49 4 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 1
platensimycin biosynthesis 26 6 1
superpathway of ergosterol biosynthesis I 26 3 1
1-butanol autotrophic biosynthesis (engineered) 27 18 1
superpathway of cholesterol biosynthesis 38 3 1
superpathway of L-lysine degradation 43 10 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 18 1