Experiment set10IT035 for Agrobacterium fabrum C58

Compare to:

p-Coumaric acid carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + p-Coumaric acid (2.5 mM), pH=7
Culturing: Agro_ML11, 24-well plate, Aerobic, at 28 (C), shaken=200 rpm
By: Mitchell Thompson on 1/6/22
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 14 genes in this experiment

For carbon source p-Coumaric acid in Agrobacterium fabrum C58

For carbon source p-Coumaric acid across organisms

SEED Subsystems

Subsystem #Specific
Protocatechuate branch of beta-ketoadipate pathway 5
Catechol branch of beta-ketoadipate pathway 3
Chloroaromatic degradation pathway 3
Multidrug Resistance, Tripartite Systems Found in Gram Negative Bacteria 1
Pyruvate Alanine Serine Interconversions 1
p-Hydroxybenzoate degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
3-oxoadipate degradation 2 2 2
protocatechuate degradation II (ortho-cleavage pathway) 4 4 3
aromatic compounds degradation via β-ketoadipate 9 8 5
toluene degradation III (aerobic) (via p-cresol) 11 7 6
β-alanine degradation II 2 2 1
catechol degradation III (ortho-cleavage pathway) 6 5 3
acetoacetate degradation (to acetyl CoA) 2 1 1
superpathway of salicylate degradation 7 6 3
4-methylcatechol degradation (ortho cleavage) 7 3 3
adipate degradation 5 5 2
adipate biosynthesis 5 4 2
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
benzoyl-CoA biosynthesis 3 3 1
polyhydroxybutanoate biosynthesis 3 2 1
ketolysis 3 2 1
catechol degradation to β-ketoadipate 4 3 1
(2S)-ethylmalonyl-CoA biosynthesis 4 2 1
4-sulfocatechol degradation 4 2 1
4-methylphenol degradation to protocatechuate 4 1 1
4-chlorobenzoate degradation 4 1 1
oleate β-oxidation 35 27 8
valproate β-oxidation 9 5 2
2-methyl-branched fatty acid β-oxidation 14 9 3
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 5 1
4-hydroxybenzoate biosynthesis III (plants) 5 3 1
ketogenesis 5 3 1
4-coumarate degradation (aerobic) 5 3 1
glutaryl-CoA degradation 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
superpathway of aerobic toluene degradation 30 12 6
bisphenol A degradation 5 2 1
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 2 2
pyruvate fermentation to acetone 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
isopropanol biosynthesis (engineered) 5 1 1
fatty acid β-oxidation VII (yeast peroxisome) 5 1 1
pyruvate fermentation to hexanol (engineered) 11 7 2
superpathway of aromatic compound degradation via 3-oxoadipate 35 15 6
fatty acid salvage 6 5 1
pyruvate fermentation to butanol II (engineered) 6 4 1
L-isoleucine degradation I 6 4 1
β-alanine biosynthesis II 6 3 1
propanoate fermentation to 2-methylbutanoate 6 3 1
mandelate degradation to acetyl-CoA 18 8 3
4-ethylphenol degradation (anaerobic) 6 2 1
4-hydroxymandelate degradation 6 1 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
jasmonic acid biosynthesis 19 4 3
fatty acid β-oxidation I (generic) 7 4 1
pyruvate fermentation to butanoate 7 3 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 1
benzoyl-CoA degradation I (aerobic) 7 3 1
acetyl-CoA fermentation to butanoate 7 2 1
mevalonate pathway II (haloarchaea) 7 1 1
spongiadioxin C biosynthesis 7 1 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
pyruvate fermentation to butanol I 8 4 1
2-methylpropene degradation 8 3 1
2-deoxy-D-ribose degradation II 8 2 1
mevalonate pathway III (Thermoplasma) 8 1 1
mevalonate pathway IV (archaea) 8 1 1
polybrominated dihydroxylated diphenyl ethers biosynthesis 8 1 1
isoprene biosynthesis II (engineered) 8 1 1
androstenedione degradation I (aerobic) 25 6 3
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 3 1
phenylacetate degradation I (aerobic) 9 3 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
4-oxopentanoate degradation 9 2 1
superpathway of testosterone and androsterone degradation 28 6 3
superpathway of coenzyme A biosynthesis II (plants) 10 7 1
3-phenylpropanoate degradation 10 4 1
L-glutamate degradation V (via hydroxyglutarate) 10 4 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
methyl tert-butyl ether degradation 10 3 1
L-lysine fermentation to acetate and butanoate 10 2 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 1
superpathway of phenylethylamine degradation 11 3 1
ethylmalonyl-CoA pathway 11 3 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 8 4
L-glutamate degradation VII (to butanoate) 12 4 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 1 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 1 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 5 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
androstenedione degradation II (anaerobic) 27 4 2
superpathway of glyoxylate cycle and fatty acid degradation 14 12 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
L-tryptophan degradation III (eukaryotic) 15 4 1
glycerol degradation to butanol 16 11 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 3 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 5 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 3 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 11 1
toluene degradation VI (anaerobic) 18 3 1
sitosterol degradation to androstenedione 18 1 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 4 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 1
platensimycin biosynthesis 26 6 1
superpathway of ergosterol biosynthesis I 26 3 1
1-butanol autotrophic biosynthesis (engineered) 27 18 1
superpathway of cholesterol biosynthesis 38 3 1
superpathway of aromatic compound degradation via 2-hydroxypentadienoate 42 11 1
superpathway of L-lysine degradation 43 10 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 18 1