Experiment set10IT022 for Escherichia coli BW25113

Compare to:

LB Aerobic with Ramoplanin 0.000125 mM

Group: stress
Media: LB + Ramoplanin (0.125 mM)
Culturing: Keio_ML9a, 96 deep-well microplate; Multitron, Aerobic, at 37 (C), shaken=750 rpm
By: Hans_Hualan on 7/20/2015
Media components: 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L Sodium Chloride

Specific Phenotypes

For 71 genes in this experiment

For stress Ramoplanin in Escherichia coli BW25113

For stress Ramoplanin across organisms

SEED Subsystems

Subsystem #Specific
Oxidative stress 3
Peptidoglycan Biosynthesis 3
D-Galacturonate and D-Glucuronate Utilization 2
ATP-dependent RNA helicases, bacterial 1
Alanine biosynthesis 1
Beta-Glucoside Metabolism 1
Biogenesis of cytochrome c oxidases 1
Biotin biosynthesis 1
Coenzyme A Biosynthesis 1
D-allose utilization 1
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 1
Multidrug Resistance Efflux Pumps 1
Nudix proteins (nucleoside triphosphate hydrolases) 1
Periplasmic disulfide interchange 1
ZZ gjo need homes 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-cysteine degradation IV 1 1 1
S-methyl-5'-thioadenosine degradation II 1 1 1
long-chain fatty acid activation 1 1 1
L-alanine biosynthesis III 1 1 1
adenine and adenosine salvage III 4 4 3
adenine and adenosine salvage V 3 3 2
neolinustatin bioactivation 3 2 2
purine ribonucleosides degradation 6 6 3
di-trans,poly-cis-undecaprenyl phosphate biosynthesis 2 2 1
adenine and adenosine salvage I 2 2 1
linustatin bioactivation 4 2 2
lotaustralin degradation 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
linoleate biosynthesis II (animals) 2 1 1
cytidylyl molybdenum cofactor sulfurylation 2 1 1
linamarin degradation 2 1 1
cinnamoyl-CoA biosynthesis 2 1 1
adenosine nucleotides degradation II 5 5 2
cardiolipin biosynthesis I 3 3 1
cardiolipin biosynthesis II 3 3 1
L-tryptophan degradation II (via pyruvate) 3 3 1
L-serine degradation 3 3 1
D-serine degradation 3 3 1
cellulose degradation II (fungi) 3 2 1
L-methionine degradation II 3 2 1
L-cysteine degradation II 3 2 1
3-methyl-branched fatty acid α-oxidation 6 3 2
alkane biosynthesis I 3 1 1
bis(guanylyl molybdopterin) cofactor sulfurylation 3 1 1
alkane biosynthesis II 3 1 1
oleate biosynthesis I (plants) 3 1 1
pectin degradation I 3 1 1
heptadecane biosynthesis 3 1 1
peptidoglycan recycling II 10 7 3
thiazole component of thiamine diphosphate biosynthesis II 7 5 2
superpathway of L-alanine biosynthesis 4 4 1
cardiolipin and phosphatidylethanolamine biosynthesis (Xanthomonas) 4 3 1
phytol degradation 4 3 1
phosphatidylcholine acyl editing 4 2 1
pinosylvin metabolism 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
tRNA-uridine 2-thiolation (mammalian mitochondria) 4 1 1
wax esters biosynthesis II 4 1 1
tRNA-uridine 2-thiolation (yeast mitochondria) 4 1 1
sporopollenin precursors biosynthesis 18 5 4
peptidoglycan recycling I 14 14 3
polyisoprenoid biosynthesis (E. coli) 5 5 1
5,6-dehydrokavain biosynthesis (engineered) 10 8 2
pectin degradation II 5 3 1
[2Fe-2S] iron-sulfur cluster biosynthesis 10 4 2
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis 5 2 1
octane oxidation 5 2 1
coumarin biosynthesis (via 2-coumarate) 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 1
tRNA-uridine 2-thiolation (thermophilic bacteria) 5 1 1
purine nucleotides degradation II (aerobic) 11 11 2
superpathway of thiamine diphosphate biosynthesis II 11 9 2
L-threonine degradation I 6 6 1
molybdopterin biosynthesis 6 6 1
thiazole component of thiamine diphosphate biosynthesis I 6 6 1
fatty acid salvage 6 5 1
L-methionine biosynthesis II 6 5 1
stearate biosynthesis II (bacteria and plants) 6 5 1
stearate biosynthesis IV 6 4 1
peptidoglycan maturation (meso-diaminopimelate containing) 12 6 2
6-gingerol analog biosynthesis (engineered) 6 2 1
stearate biosynthesis I (animals) 6 1 1
α-tomatine degradation 6 1 1
superpathway of cardiolipin biosynthesis (bacteria) 13 11 2
L-isoleucine biosynthesis I (from threonine) 7 7 1
lipoprotein posttranslational modification (Gram-negative bacteria) 7 6 1
glycine betaine degradation III 7 4 1
ceramide degradation by α-oxidation 7 2 1
capsaicin biosynthesis 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
glycine betaine degradation I 8 4 1
L-mimosine degradation 8 4 1
glutathione-mediated detoxification I 8 3 1
2-deoxy-D-ribose degradation II 8 3 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
tRNA-uridine 2-thiolation (cytoplasmic) 8 1 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 4 1
superpathway of thiamine diphosphate biosynthesis I 10 10 1
nucleoside and nucleotide degradation (archaea) 10 4 1
3-phenylpropanoate degradation 10 4 1
suberin monomers biosynthesis 20 3 2
superpathway of fatty acid biosynthesis II (plant) 43 38 4
tRNA-uridine 2-thiolation and selenation (bacteria) 11 7 1
L-methionine salvage cycle III 11 5 1
mycobactin biosynthesis 11 3 1
superpathway of phospholipid biosynthesis III (E. coli) 12 12 1
superpathway of L-isoleucine biosynthesis I 13 13 1
superpathway of purine nucleotide salvage 14 13 1
hypoglycin biosynthesis 14 4 1
firefly bioluminescence 14 2 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis II 15 13 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 2 1
superpathway of branched chain amino acid biosynthesis 17 17 1
peptidoglycan biosynthesis IV (Enterococcus faecium) 17 12 1
peptidoglycan biosynthesis II (staphylococci) 17 12 1
superpathway of L-threonine metabolism 18 16 1
purine nucleobases degradation II (anaerobic) 24 17 1
superpathway of fatty acids biosynthesis (E. coli) 53 51 2
palmitate biosynthesis III 29 21 1
oleate β-oxidation 35 32 1